Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
PLoS Pathog ; 20(2): e1012007, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38386661

RESUMEN

Smallpox was the most rampant infectious disease killer of the 20th century, yet much remains unknown about the pathogenesis of the variola virus. Using archived tissue from a study conducted at the Centers for Disease Control and Prevention we characterized pathology in 18 cynomolgus macaques intravenously infected with the Harper strain of variola virus. Six macaques were placebo-treated controls, six were tecovirimat-treated beginning at 2 days post-infection, and six were tecovirimat-treated beginning at 4 days post-infection. All macaques were treated daily until day 17. Archived tissues were interrogated using immunohistochemistry, in situ hybridization, immunofluorescence, and electron microscopy. Gross lesions in three placebo-treated animals that succumbed to infection primarily consisted of cutaneous vesicles, pustules, or crusts with lymphadenopathy. The only gross lesions noted at the conclusion of the study in the three surviving placebo-treated and the Day 4 treated animals consisted of resolving cutaneous pox lesions. No gross lesions attributable to poxviral infection were present in the Day 2 treated macaques. Histologic lesions in three placebo-treated macaques that succumbed to infection consisted of proliferative and necrotizing dermatitis with intracytoplasmic inclusion bodies and lymphoid depletion. The only notable histologic lesion in the Day 4 treated macaques was resolving dermatitis; no notable lesions were seen in the Day 2 treated macaques. Variola virus was detected in all three placebo-treated animals that succumbed to infection prior to the study's conclusion by all utilized methods (IHC, ISH, IFA, EM). None of the three placebo-treated animals that survived to the end of the study nor the animals in the two tecovirimat treatment groups showed evidence of variola virus by these methods. Our findings further characterize variola lesions in the macaque model and describe new molecular methods for variola detection.


Asunto(s)
Dermatitis , Viruela , Virus de la Viruela , Animales , Benzamidas , Isoindoles , Macaca fascicularis , Viruela/tratamiento farmacológico , Viruela/patología , Estados Unidos
2.
J Infect Dis ; 229(Supplement_2): S265-S274, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995376

RESUMEN

Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.


Asunto(s)
Orthopoxvirus , Viruela , Virus de la Viruela , Humanos , Monkeypox virus , Monocitos
3.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37195882

RESUMEN

Poxviridae is a family of enveloped, brick-shaped or ovoid viruses. The genome is a linear molecule of dsDNA (128-375 kbp) with covalently closed ends. The family includes the sub-families Entomopoxvirinae, whose members have been found in four orders of insects, and Chordopoxvirinae, whose members are found in mammals, birds, reptiles and fish. Poxviruses are important pathogens in various animals, including humans, and typically result in the formation of lesions, skin nodules, or disseminated rash. Infections can be fatal. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Poxviridae, which is available at ictv.global/report/poxviridae.


Asunto(s)
Poxviridae , Animales , Humanos , Poxviridae/genética , Peces , Aves , Mamíferos , Reptiles , Genoma Viral , Replicación Viral , Virión
4.
MMWR Morb Mortal Wkly Rep ; 72(9): 232-243, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862595

RESUMEN

Monkeypox (mpox) is a disease caused by infection with Monkeypox virus (MPXV), an Orthopoxvirus (OPXV) in the same genus as Variola virus, which causes smallpox. During 2022, a global outbreak involving mpox clade IIb was recognized, primarily among gay, bisexual, and other men who have sex with men.* Most affected patients have been immunocompetent and experienced ≤10 rash lesions (1). CDC has recommended supportive care including pain control.† However, some patients have experienced severe mpox manifestations, including ocular lesions, neurologic complications, myopericarditis, complications associated with mucosal (oral, rectal, genital, and urethral) lesions, and uncontrolled viral spread due to moderate or severe immunocompromise, particularly advanced HIV infection (2). Therapeutic medical countermeasures (MCMs) are Food and Drug Administration (FDA)-regulated drugs and biologics that are predominantly stockpiled by the U.S. government; MCMs developed for smallpox preparedness or shown to be effective against other OPXVs (i.e., tecovirimat, brincidofovir, cidofovir, trifluridine ophthalmic solution, and vaccinia immune globulin intravenous [VIGIV]) have been used to treat severe mpox. During May 2022-January 2023, CDC provided more than 250 U.S. mpox consultations. This report synthesizes data from animal models, MCM use for human cases of related OPXV, unpublished data, input from clinician experts, and experience during consultations (including follow-up) to provide interim clinical treatment considerations. Randomized controlled trials and other carefully controlled research studies are needed to evaluate the effectiveness of MCMs for treating human mpox. Until data gaps are filled, the information presented in this report represents the best available information concerning the effective use of MCMs and should be used to guide decisions about MCM use for mpox patients.


Asunto(s)
Infecciones por VIH , Mpox , Minorías Sexuales y de Género , Viruela , Animales , Masculino , Humanos , Homosexualidad Masculina
5.
MMWR Recomm Rep ; 70(1): 1-12, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417593

RESUMEN

This report summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of the rVSVΔG-ZEBOV-GP Ebola vaccine (Ervebo) in the United States. The vaccine contains rice-derived recombinant human serum albumin and live attenuated recombinant vesicular stomatitis virus (VSV) in which the gene encoding the glycoprotein of VSV was replaced with the gene encoding the glycoprotein of Ebola virus species Zaire ebolavirus. Persons with a history of severe allergic reaction (e.g., anaphylaxis) to rice protein should not receive Ervebo. This is the first and only vaccine currently licensed by the Food and Drug Administration for the prevention of Ebola virus disease (EVD). These guidelines will be updated based on availability of new data or as new vaccines are licensed to protect against EVD.ACIP recommends preexposure vaccination with Ervebo for adults aged ≥18 years in the U.S. population who are at highest risk for potential occupational exposure to Ebola virus species Zaire ebolavirus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff at biosafety level 4 facilities in the United States. Recommendations for use of Ervebo in additional populations at risk for exposure and other settings will be considered and discussed by ACIP in the future.


Asunto(s)
Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Comités Consultivos , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Estados Unidos/epidemiología , United States Food and Drug Administration
6.
MMWR Morb Mortal Wkly Rep ; 71(37): 1190-1195, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36107794

RESUMEN

Currently, no Food and Drug Administration (FDA)-approved treatments for human monkeypox are available. Tecovirimat (Tpoxx), however, is an antiviral drug that has demonstrated efficacy in animal studies and is FDA-approved for treating smallpox. Use of tecovirimat for treatment of monkeypox in the United States is permitted only through an FDA-regulated Expanded Access Investigational New Drug (EA-IND) mechanism. CDC holds a nonresearch EA-IND protocol that facilitates access to and use of tecovirimat for treatment of monkeypox.§ The protocol includes patient treatment and adverse event reporting forms to monitor safety and ensure intended clinical use in accordance with FDA EA-IND requirements. The current multinational monkeypox outbreak, first detected in a country where Monkeypox virus infection is not endemic in May 2022, has predominantly affected gay, bisexual, and other men who have sex with men (MSM) (1,2). To describe characteristics of persons treated with tecovirimat for Monkeypox virus infection, demographic and clinical data abstracted from available tecovirimat EA-IND treatment forms were analyzed. As of August 20, 2022, intake and outcome forms were available for 549 and 369 patients, respectively; 97.7% of patients were men, with a median age of 36.5 years. Among patients with available data, 38.8% were reported to be non-Hispanic White (White) persons, 99.8% were prescribed oral tecovirimat, and 93.1% were not hospitalized. Approximately one half of patients with Monkeypox virus infection who received tecovirimat were living with HIV infection. The median interval from initiation of tecovirimat to subjective improvement was 3 days and did not differ by HIV infection status. Adverse events were reported in 3.5% of patients; all but one adverse event were nonserious. These data support the continued access to and treatment with tecovirimat for patients with or at risk for severe disease in the ongoing monkeypox outbreak.


Asunto(s)
Infecciones por VIH , Mpox , Minorías Sexuales y de Género , Adulto , Animales , Antivirales/uso terapéutico , Drogas en Investigación/uso terapéutico , Femenino , Infecciones por VIH/tratamiento farmacológico , Homosexualidad Masculina , Humanos , Masculino , Mpox/tratamiento farmacológico , Mpox/epidemiología , Monkeypox virus , Estados Unidos
7.
MMWR Morb Mortal Wkly Rep ; 71(40): 1278-1282, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201401

RESUMEN

Human monkeypox is caused by Monkeypox virus (MPXV), an Orthopoxvirus, previously rare in the United States (1). The first U.S. case of monkeypox during the current outbreak was identified on May 17, 2022 (2). As of September 28, 2022, a total of 25,341 monkeypox cases have been reported in the United States.* The outbreak has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) (3). JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic), administered subcutaneously as a 2-dose (0.5 mL per dose) series with doses administered 4 weeks apart, was approved by the Food and Drug Administration (FDA) in 2019 to prevent smallpox and monkeypox infection (4). U.S. distribution of JYNNEOS vaccine as postexposure prophylaxis (PEP) for persons with known exposures to MPXV began in May 2022. A U.S. national vaccination strategy† for expanded PEP, announced on June 28, 2022, recommended subcutaneous vaccination of persons with known or presumed exposure to MPXV, broadening vaccination eligibility. FDA emergency use authorization (EUA) of intradermal administration of 0.1 mL of JYNNEOS on August 9, 2022, increased vaccine supply (5). As of September 28, 2022, most vaccine has been administered as PEP or expanded PEP. Because of the limited amount of time that has elapsed since administration of initial vaccine doses, as of September 28, 2022, relatively few persons in the current outbreak have completed the recommended 2-dose series.§ To examine the incidence of monkeypox among persons who were unvaccinated and those who had received ≥1 JYNNEOS vaccine dose, 5,402 reported monkeypox cases occurring among males¶ aged 18-49 years during July 31-September 3, 2022, were analyzed by vaccination status across 32 U.S. jurisdictions.** Average monkeypox incidence (cases per 100,000) among unvaccinated persons was 14.3 (95% CI = 5.0-41.0) times that among persons who received 1 dose of JYNNEOS vaccine ≥14 days earlier. Monitoring monkeypox incidence by vaccination status in timely surveillance data might provide early indications of vaccine-related protection that can be confirmed through other well-controlled vaccine effectiveness studies. This early finding suggests that a single dose of JYNNEOS vaccine provides some protection against monkeypox infection. The degree and durability of such protection is unknown, and it is recommended that people who are eligible for monkeypox vaccination receive the complete 2-dose series.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Vacuna contra Viruela , Homosexualidad Masculina , Humanos , Incidencia , Masculino , Mpox/epidemiología , Mpox/prevención & control , Estados Unidos/epidemiología
8.
MMWR Morb Mortal Wkly Rep ; 71(8): 290-292, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35202354

RESUMEN

On December 19, 2019, the Food and Drug Administration (FDA) approved rVSVΔG-ZEBOV-GP Ebola vaccine (ERVEBO, Merck) for the prevention of Ebola virus disease (EVD) caused by infection with Ebola virus, species Zaire ebolavirus, in adults aged ≥18 years. In February 2020, the Advisory Committee on Immunization Practices (ACIP) recommended preexposure vaccination with ERVEBO for adults aged ≥18 years in the United States who are at highest risk for potential occupational exposure to Ebola virus because they are responding to an outbreak of EVD, work as health care personnel at federally designated Ebola treatment centers in the United States, or work as laboratorians or other staff members at biosafety level 4 facilities in the United States (1).


Asunto(s)
Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/prevención & control , Exposición Profesional/prevención & control , Vacunación , Adulto , Comités Consultivos , Centers for Disease Control and Prevention, U.S. , Personal de Salud , Directrices para la Planificación en Salud , Humanos , Personal de Laboratorio , Estados Unidos/epidemiología
9.
MMWR Morb Mortal Wkly Rep ; 71(14): 509-516, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389974

RESUMEN

Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.


Asunto(s)
Mpox , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiología , Mpox/prevención & control , Monkeypox virus/genética , Nigeria/epidemiología , Texas/epidemiología
11.
MMWR Morb Mortal Wkly Rep ; 67(10): 306-310, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29543790

RESUMEN

The recent apparent increase in human monkeypox cases across a wide geographic area, the potential for further spread, and the lack of reliable surveillance have raised the level of concern for this emerging zoonosis. In November 2017, the World Health Organization (WHO), in collaboration with CDC, hosted an informal consultation on monkeypox with researchers, global health partners, ministries of health, and orthopoxvirus experts to review and discuss human monkeypox in African countries where cases have been recently detected and also identify components of surveillance and response that need improvement. Endemic human monkeypox has been reported from more countries in the past decade than during the previous 40 years. Since 2016, confirmed cases of monkeypox have occurred in Central African Republic, Democratic Republic of the Congo, Liberia, Nigeria, Republic of the Congo, and Sierra Leone and in captive chimpanzees in Cameroon. Many countries with endemic monkeypox lack recent experience and specific knowledge about the disease to detect cases, treat patients, and prevent further spread of the virus. Specific improvements in surveillance capacity, laboratory diagnostics, and infection control measures are needed to launch an efficient response. Further, gaps in knowledge about the epidemiology and ecology of the virus need to be addressed to design, recommend, and implement needed prevention and control measures.


Asunto(s)
Enfermedades Transmisibles Emergentes , Mpox/epidemiología , África Central/epidemiología , África Occidental/epidemiología , Humanos
12.
N Engl J Med ; 381(20): 1962-1963, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31722158
14.
J Virol ; 89(23): 11909-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26378174

RESUMEN

UNLABELLED: Smallpox was declared eradicated in 1980 after an intensive vaccination program using different strains of vaccinia virus (VACV; Poxviridae). VACV strain IOC (VACV-IOC) was the seed strain of the smallpox vaccine manufactured by the major vaccine producer in Brazil during the smallpox eradication program. However, little is known about the biological and immunological features as well as the phylogenetic relationships of this first-generation vaccine. In this work, we present a comprehensive characterization of two clones of VACV-IOC. Both clones had low virulence in infected mice and induced a protective immune response against a lethal infection comparable to the response of the licensed vaccine ACAM2000 and the parental strain VACV-IOC. Full-genome sequencing revealed the presence of several fragmented virulence genes that probably are nonfunctional, e.g., F1L, B13R, C10L, K3L, and C3L. Most notably, phylogenetic inference supported by the structural analysis of the genome ends provides evidence of a novel, independent cluster in VACV phylogeny formed by VACV-IOC, the Brazilian field strains Cantagalo (CTGV) and Serro 2 viruses, and horsepox virus, a VACV-like virus supposedly related to an ancestor of the VACV lineage. Our data strongly support the hypothesis that CTGV-like viruses represent feral VACV that evolved in parallel with VACV-IOC after splitting from a most recent common ancestor, probably an ancient smallpox vaccine strain related to horsepox virus. Our data, together with an interesting historical investigation, revisit the origins of VACV and propose new evolutionary relationships between ancient and extant VACV strains, mainly horsepox virus, VACV-IOC/CTGV-like viruses, and Dryvax strain. IMPORTANCE: First-generation vaccines used to eradicate smallpox had rates of adverse effects that are not acceptable by current health care standards. Moreover, these vaccines are genetically heterogeneous and consist of a pool of quasispecies of VACV. Therefore, the search for new-generation smallpox vaccines that combine low pathogenicity, immune protection, and genetic homogeneity is extremely important. In addition, the phylogenetic relationships and origins of VACV strains are quite nebulous. We show the characterization of two clones of VACV-IOC, a unique smallpox vaccine strain that contributed to smallpox eradication in Brazil. The immunogenicity and reduced virulence make the IOC clones good options for alternative second-generation smallpox vaccines. More importantly, this study reveals the phylogenetic relationship between VACV-IOC, feral VACV established in nature, and the ancestor-like horsepox virus. Our data expand the discussion on the origins and evolutionary connections of VACV lineages.


Asunto(s)
Evolución Biológica , Filogenia , Viruela/prevención & control , Virus Vaccinia/genética , Vacunas Virales/genética , Análisis de Varianza , Animales , Secuencia de Bases , Teorema de Bayes , Brasil , Línea Celular , Ensayo Cometa , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Virulencia , Factores de Virulencia/genética
15.
MMWR Recomm Rep ; 64(RR-02): 1-26, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25695372

RESUMEN

This report outlines recommendations for the clinical use of the three smallpox vaccines stored in the U.S. Strategic National Stockpile for persons who are exposed to smallpox virus or at high risk for smallpox infection during a postevent vaccination program following an intentional or accidental release of the virus. No absolute contraindications exist for smallpox vaccination in a postevent setting. However, several relative contraindications exist among persons with certain medical conditions. CDC recommendations for smallpox vaccine use were developed in consideration of the risk for smallpox infection, risk for an adverse event following vaccination, and benefit from vaccination. Smallpox vaccines are made from live vaccinia viruses that protect against smallpox disease. They do not contain variola virus, the causative agent of smallpox. The three smallpox vaccines stockpiled are ACAM2000, Aventis Pasteur Smallpox Vaccine (APSV), and Imvamune. Surveillance and containment activities including vaccination with replication-competent smallpox vaccine (i.e., vaccine viruses capable of replicating in mammalian cells such as ACAM2000 and APSV) will be the primary response strategy for achieving epidemic control. Persons exposed to smallpox virus are at high risk for developing and transmitting smallpox and should be vaccinated with a replication-competent smallpox vaccine unless severely immunodeficient. Because of a high likelihood of a poor immune response and an increased risk for adverse events, smallpox vaccination should be avoided in persons with severe immunodeficiency who are not expected to benefit from vaccine, including bone marrow transplant recipients within 4 months of transplantation, persons infected with HIV with CD4 cell counts <50 cells/mm3, and persons with severe combined immunodeficiency, complete DiGeorge syndrome, and other severely immunocompromised states requiring isolation. If antivirals are not immediately available, it is reasonable to consider the use of Imvamune in the setting of a smallpox virus exposure in persons with severe immunodeficiency. Persons without a known smallpox virus exposure might still be at high risk for developing smallpox infection depending on the magnitude of the outbreak and the effectiveness of the public health response. Such persons will be defined by public health authorities and should be screened for relative contraindications to smallpox vaccination. Relative contraindications include atopic dermatitis (eczema), HIV infection (CD4 cell counts of 50-199 cells/mm3), other immunocompromised states, and vaccine or vaccine-component allergies. Persons with relative contraindications should be vaccinated with Imvamune when available and authorized for use by the Food and Drug Administration. These recommendations will be updated as new data on smallpox vaccines become available and further clinical guidance for other medical countermeasures including antivirals is developed.


Asunto(s)
Programas de Inmunización/normas , Guías de Práctica Clínica como Asunto , Vacuna contra Viruela/administración & dosificación , Viruela/prevención & control , Derrame de Material Biológico , Bioterrorismo , Planificación en Desastres , Humanos , Estados Unidos
16.
Clin Infect Dis ; 61(10): 1543-8, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26243783

RESUMEN

BACKGROUND: Human and animal poxvirus infections are being reported with increasing frequency. We describe a challenging case history and treatment of a previously unknown poxvirus rash illness in a renal transplant patient. METHODS: A combination of classical microbiology techniques, including viral culture and electron microscopy, were used to provide initial clinical diagnosis. Subsequent standard polymerase chain reaction assays available in 2001 were noncontributory. Next generation sequencing was used to provide definitive diagnosis. RESULTS: Retrospectively, next generation sequencing methods were used to ultimately provide the definitive diagnosis of a novel poxvirus infection initially identified by electron microscopy. The closest relative of this poxvirus, identified in North America, is a poxvirus collected from a mosquito pool from Central Africa in 1972. CONCLUSIONS: This diagnostic quandary was ultimately solved using next generation DNA sequencing. This article describes the use of classical and next generation diagnostic strategies to identify etiologic agents of emerging infectious diseases and once again demonstrates the susceptibility of immunossupressed patients to novel pathogens. The virus identified is closely related to Yoka virus; these viruses appear to have independently diverged from a common ancestor of all known orthopoxviruses.


Asunto(s)
Exantema/etiología , Exantema/patología , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/patología , Poxviridae/clasificación , Poxviridae/aislamiento & purificación , Exantema/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Huésped Inmunocomprometido , Trasplante de Riñón , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Filogenia , Infecciones por Poxviridae/virología , Estudios Retrospectivos , Análisis de Secuencia de ADN , Receptores de Trasplantes , Cultivo de Virus
17.
Clin Infect Dis ; 60(2): 195-202, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25301210

RESUMEN

BACKGROUND: Some human poxvirus infections can be acquired through zoonotic transmission. We report a previously unknown poxvirus infection in 2 patients, 1 of whom was immunocompromised; both patients had known equine contact. METHODS: The patients were interviewed and clinical information was abstracted from the patients' medical files. Biopsies of the skin lesions were collected from both patients for histopathology, immunohistochemistry, and transmission electron microscopy analysis. Oral and skin swabs were collected from animals with frequent contact with the patients, and environmental sampling including rodent trapping was performed on the farm where the immunosuppressed patient was employed. "Pan-pox and high Guanine-cytosine" polymerase chain reaction assays were performed on patient, animal, and environmental isolates. Amplicon sequences of the viral DNA were used for agent identification and phylogenetic analysis. RESULTS: Specimens from both human cases revealed a novel poxvirus. The agent shares 88% similarity to viruses in the Parapoxvirus genus and 78% to those in the Molluscipoxvirus genus but is sufficiently divergent to resist classification as either. All animal and environmental specimens were negative for poxvirus and both patients had complete resolution of lesions. CONCLUSIONS: This report serves as a reminder that poxviruses should be considered in cutaneous human infections, especially in individuals with known barnyard exposures. The clinical course of the patients was similar to that of parapoxvirus infections, and the source of this virus is currently unknown but is presumed to be zoonotic. This report also demonstrates the importance of a comprehensive approach to diagnosis of human infections caused by previously unknown pathogens.


Asunto(s)
Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/virología , Poxviridae/clasificación , Poxviridae/aislamiento & purificación , Biopsia , ADN Viral/genética , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Poxviridae/genética , Infecciones por Poxviridae/patología , Análisis de Secuencia de ADN , Piel/patología , Piel/virología , Estados Unidos
18.
Emerg Infect Dis ; 21(11): 1897-905, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26484940

RESUMEN

Since Ebola virus disease was identified in West Africa on March 23, 2014, the Centers for Disease Control and Prevention (CDC) has undertaken the most intensive response in the agency's history; >3,000 staff have been involved, including >1,200 deployed to West Africa for >50,000 person workdays. Efforts have included supporting incident management systems in affected countries; mobilizing partners; and strengthening laboratory, epidemiology, contact investigation, health care infection control, communication, and border screening in West Africa, Nigeria, Mali, Senegal, and the United States. All efforts were undertaken as part of national and global response activities with many partner organizations. CDC was able to support community, national, and international health and public health staff to prevent an even worse event. The Ebola virus disease epidemic highlights the need to strengthen national and international systems to detect, respond to, and prevent the spread of future health threats.


Asunto(s)
Centers for Disease Control and Prevention, U.S./estadística & datos numéricos , Planificación en Desastres/métodos , Manejo de la Enfermedad , Brotes de Enfermedades/prevención & control , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/prevención & control , África Occidental , Planificación en Desastres/estadística & datos numéricos , Brotes de Enfermedades/estadística & datos numéricos , Humanos , Estados Unidos
19.
J Clin Microbiol ; 53(4): 1406-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673790

RESUMEN

A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Viruela/aislamiento & purificación , Secuencia de Bases , ADN Viral/genética , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Especificidad de la Especie
20.
Clin Infect Dis ; 58(2): 260-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24158414

RESUMEN

Human monkeypox is a zoonotic Orthopoxvirus with a presentation similar to smallpox. Clinical differentiation of the disease from smallpox and varicella is difficult. Laboratory diagnostics are principal components to identification and surveillance of disease, and new tests are needed for a more precise and rapid diagnosis. The majority of human infections occur in Central Africa, where surveillance in rural areas with poor infrastructure is difficult but can be accomplished with evidence-guided tools and educational materials to inform public health workers of important principles. Contemporary epidemiological studies are needed now that populations do not receive routine smallpox vaccination. New therapeutics and vaccines offer hope for the treatment and prevention of monkeypox; however, more research must be done before they are ready to be deployed in an endemic setting. There is a need for more research in the epidemiology, ecology, and biology of the virus in endemic areas to better understand and prevent human infections.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Mpox/epidemiología , Orthopoxvirus/aislamiento & purificación , Zoonosis/epidemiología , África Central/epidemiología , Animales , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/virología , Enfermedades Endémicas , Humanos , Mpox/diagnóstico , Mpox/virología , Población Rural , Zoonosis/diagnóstico , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA