Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Chem Toxicol ; 166: 113204, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679974

RESUMEN

The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 µg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.


Asunto(s)
Celulosa , Nanoestructuras , Células CACO-2 , Celulosa/química , Celulosa/toxicidad , Humanos , Nanoestructuras/química , Nanoestructuras/toxicidad , Permeabilidad , Uniones Estrechas
2.
Sci Rep ; 11(1): 4651, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633245

RESUMEN

This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200-1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III-V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures.

3.
RSC Adv ; 10(24): 14134-14146, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35498466

RESUMEN

A base-catalyzed sol-gel approach combined with a solvent-driven self-assembly process at low temperature is augmented to make manganese oxide (Mn3O4), copper oxide (CuO), and magnesium hydroxide (Mg(OH)2) nanostructures with size- and shape-controlled morphologies. Nanostructures of Mn3O4 with either hexagonal, irregular particle, or ribbon shape morphologies with an average diameter ranged from 100 to 200 nm have been prepared in four different solvent types. In all morphologies of Mn3O4, the experimental XRD patterns have indexed the nanocrystal unit cell structure to triclinic. The hexagonal nanoparticles of Mn3O4 exhibit high mesoporocity with a BET surface area of 91.68 m2 g-1 and BJH desorption average pore diameter of ∼28 nm. In the preparation of CuO nanostructures, highly nanoporous thin sheets have been produced in water and water/toluene solvent systems. The simulated XRD pattern matches the experimental XRD patterns of CuO nanostructures and indexes the nanocrystal unit cell structure to monoclinic. With the smallest desorption total pore volume of 0.09 cm3 g-1, CuO nanosheets have yielded the lowest BET surface area of 18.31 m2 g-1 and a BHJ desorption average pore diameter of ∼16 nm. The sol of magnesium hydroxide nanocrystals produces highly nanoporous hexagonal nanoplates in water and water/toluene solvent systems. The wide angle powder XRD patterns show well-defined Bragg's peaks, indexing to a hexagonal unit cell structure. The hexagonal plates show a significantly high BET surface area (72.31 m2 g-1), which is slightly lower than the surface area of Mn3O4 hexagonal nanoparticles. The non-template driven sol-gel synthesis process demonstrated herein provides a facile method to prepare highly mesoporous and nanoporous nanostructures of binary (II-IV) metal oxides and their hydroxide derivatives, enabling potential nanostructure platforms with high activities and selectivities for catalysis applications.

4.
RSC Adv ; 9(26): 14638-14648, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35516315

RESUMEN

A reliable sol-gel approach, which combines the formation of ZnO nanocrystals and a solvent driven, shape-controlled, crystal-growth process to form well-organized ZnO nanostructures at low temperature is presented. The sol of ZnO nanocrystals showed shape-controlled crystal growth with respect to the solvent type, resulting in either nanorods, nanoparticles, or nanoslates. The solvothermal process, along with the solvent polarity facilitate the shape-controlled crystal growth process, augmenting the concept of a selective adhesion of solvents onto crystal facets and controlling the final shape of the nanostructures. The XRD traces and XPS spectra support the concept of selective adhesion of solvents onto crystal facets that leads to yield different ZnO morphologies. The shift in optical absorption maxima from 332 nm in initial precursor solution, to 347 nm for ZnO nanocrystals sol, and finally to 375 nm for ZnO nanorods, evidenced the gradual growth and ripening of nanocrystals to dimensional nanostructures. The engineered optical band gaps of ZnO nanostructures are found to be ranged from 3.10 eV to 3.37 eV with respect to the ZnO nanostructures formed in different solvent systems. The theoretical band gaps computed from the experimental XRD spectral traces lie within the range of the optical band gaps obtained from UV-visible spectra of ZnO nanostructures. The spin-casted thin film of ZnO nanorods prepared in DMF exhibits the electrical conductivity of 1.14 × 10-3 S cm-1, which is nearly one order of magnitude higher than the electrical conductivity of ZnO nanoparticles formed in hydroquinone and ZnO sols. The possibility of engineering the band gap and electrical properties of ZnO at nanoscale utilizing an aqueous-based wet chemical synthesis process presented here is simple, versatile, and environmentally friendly, and thus may applicable for making other types of band-gap engineered metal oxide nanostructures with shape-controlled morphologies and optoelectrical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA