Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2210300120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634142

RESUMEN

Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.


Asunto(s)
Agrobacterium , Proteínas Represoras , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Agrobacterium/genética , Agrobacterium/metabolismo , Plásmidos , Productos Agrícolas/genética , Inmunidad de la Planta , Raíces de Plantas/metabolismo
2.
Physiol Plant ; 176(3): e14325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715548

RESUMEN

Boosting plant immunity by priming agents can lower agrochemical dependency in plant production. Levan and levan-derived oligosaccharides (LOS) act as priming agents against biotic stress in several crops. Additionally, beneficial microbes can promote plant growth and protect against fungal diseases. This study assessed possible synergistic effects caused by levan, LOS and five levan- and LOS-metabolizing Bacillaceae (Bacillus and Priestia) strains in tomato and wheat. Leaf and seed defense priming assays were conducted in non-soil (semi-sterile substrate) and soil-based systems, focusing on tomato-Botrytis cinerea and wheat-Magnaporthe oryzae Triticum (MoT) pathosystems. In the non-soil system, seed defense priming with levan, the strains (especially Bacillus velezensis GA1), or their combination significantly promoted tomato growth and protection against B. cinerea. While no growth stimulatory effects were observed for wheat, disease protective effects were also observed in the wheat-MoT pathosystem. When grown in soil and subjected to leaf defense priming, tomato plants co-applied with levan and the bacterial strains showed increased resistance to B. cinerea compared with plants treated with levan or single strains, and these effects were synergistic in some cases. For seed defense priming in soil, more synergistic effects on disease tolerance were observed in a non-fertilized soil as compared to a fertilized soil, suggesting that potential prebiotic effects of levan are more prominent in poor soils. The potential of using combinations of Bacilliaceae and levan in sustainable agriculture is discussed.


Asunto(s)
Bacillus , Fructanos , Enfermedades de las Plantas , Solanum lycopersicum , Triticum , Fructanos/metabolismo , Triticum/microbiología , Triticum/metabolismo , Triticum/inmunología , Triticum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Bacillus/fisiología , Botrytis , Inmunidad de la Planta , Resistencia a la Enfermedad , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/microbiología , Semillas/inmunología , Ascomicetos
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443212

RESUMEN

Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.


Asunto(s)
Agrobacterium/genética , Proteínas Asociadas a CRISPR/genética , Edición Génica/métodos , Agrobacterium tumefaciens/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Mutagénesis/genética , Mutación/genética , Zea mays/genética
4.
Appl Environ Microbiol ; 89(11): e0095023, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37882529

RESUMEN

IMPORTANCE: Plant protection products are essential for ensuring food production, but their use poses a threat to human and environmental health, and their efficacy is decreasing due to the acquisition of resistance by pathogens. Stricter regulations and consumer demand for cleaner produce are driving the search for safer and more sustainable alternatives. Microbial biocontrol agents, such as microorganisms with antifungal activity, have emerged as a promising alternative management strategy, but their commercial use has been limited by poor establishment and spread on crops. This study presents a novel system to overcome these challenges. The biocontrol agent Lactiplantibacillus plantarum AMBP214 was spray-dried and successfully dispersed to strawberry flowers via bumblebees. This is the first report of combining spray-dried, non-spore-forming bacteria with pollinator-dispersal, which scored better than the state-of-the-art in terms of dispersal to the plant (CFU/flower), and resuscitation of the biocontrol agent. Therefore, this new entomovectoring system holds great promise for the use of biocontrol agents for disease management in agriculture.


Asunto(s)
Fragaria , Control Biológico de Vectores , Animales , Abejas , Humanos , Productos Agrícolas , Fragaria/microbiología
5.
Plant Cell ; 27(8): 2095-118, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26276833

RESUMEN

Peptides fulfill a plethora of functions in plant growth, development, and stress responses. They act as key components of cell-to-cell communication, interfere with signaling and response pathways, or display antimicrobial activity. Strikingly, both the diversity and amount of plant peptides have been largely underestimated. Most characterized plant peptides to date acting as small signaling peptides or antimicrobial peptides are derived from nonfunctional precursor proteins. However, evidence is emerging on peptides derived from a functional protein, directly translated from small open reading frames (without the involvement of a precursor) or even encoded by primary transcripts of microRNAs. These novel types of peptides further add to the complexity of the plant peptidome, even though their number is still limited and functional characterization as well as translational evidence are often controversial. Here, we provide a comprehensive overview of the reported types of plant peptides, including their described functional and structural properties. We propose a novel, unifying peptide classification system to emphasize the enormous diversity in peptide synthesis and consequent complexity of the still expanding knowledge on the plant peptidome.


Asunto(s)
Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Precursores de Proteínas/metabolismo , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Modelos Genéticos , Sistemas de Lectura Abierta/genética , Péptidos/genética , Proteínas de Plantas/genética , Plantas/genética , Precursores de Proteínas/genética , Proteoma/genética , Transcriptoma/genética
6.
BMC Bioinformatics ; 18(1): 37, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28095775

RESUMEN

BACKGROUND: Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. RESULTS: To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. CONCLUSION: To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistemas de Lectura Abierta , Péptidos/genética , Bases de Datos Factuales , Anotación de Secuencia Molecular
7.
Plant Physiol ; 172(2): 858-873, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503603

RESUMEN

Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Citosol/metabolismo , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Daño del ADN , Regulación de la Expresión Génica de las Plantas , Glutarredoxinas/genética , Immunoblotting , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo
8.
Plant Physiol ; 167(3): 1017-29, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25593351

RESUMEN

Plants have developed a variety of mechanisms to cope with abiotic and biotic stresses. In a previous subcellular localization study of hydrogen peroxide-responsive proteins, two peptides with an unknown function (designated ARACIN1 and ARACIN2) have been identified. These peptides are structurally very similar but are transcriptionally differentially regulated during abiotic stresses during Botrytis cinerea infection or after benzothiadiazole and methyl jasmonate treatments. In Arabidopsis (Arabidopsis thaliana), these paralogous genes are positioned in tandem within a cluster of pathogen defense-related genes. Both ARACINs are small, cationic, and hydrophobic peptides, known characteristics for antimicrobial peptides. Their genes are expressed in peripheral cell layers prone to pathogen entry and are lineage specific to the Brassicaceae family. In vitro bioassays demonstrated that both ARACIN peptides have a direct antifungal effect against the agronomically and economically important necrotrophic fungi B. cinerea, Alternaria brassicicola, Fusarium graminearum, and Sclerotinia sclerotiorum and yeast (Saccharomyces cerevisiae). In addition, transgenic Arabidopsis plants that ectopically express ARACIN1 are protected better against infections with both B. cinerea and A. brassicicola. Therefore, we can conclude that both ARACINs act as antimicrobial peptides.


Asunto(s)
Antifúngicos/farmacología , Arabidopsis/microbiología , Brassicaceae/metabolismo , Péptidos/farmacología , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Secuencia de Bases , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Especificidad de Órganos/efectos de los fármacos , Péptidos/química , Péptidos/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transcripción Genética/efectos de los fármacos
9.
Antimicrob Agents Chemother ; 58(8): 4974-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913176

RESUMEN

We performed a structure-activity relationship study of the antibiofilm plant-derived decapeptide OSIP108. Introduction of positively charged amino acids R, H, and K resulted in an up-to-5-fold-increased antibiofilm activity against Candida albicans compared to native OSIP108, whereas replacement of R9 resulted in complete abolishment of its antibiofilm activity. By combining the most promising amino acid substitutions, we found that the double-substituted OSIP108 analogue Q6R/G7K had an 8-fold-increased antibiofilm activity.


Asunto(s)
Antifúngicos/química , Proteínas de Arabidopsis/química , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antifúngicos/farmacología , Arabidopsis/química , Proteínas de Arabidopsis/farmacología , Arginina/química , Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Histidina/química , Lisina/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Electricidad Estática , Relación Estructura-Actividad
10.
Antimicrob Agents Chemother ; 58(5): 2647-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24566179

RESUMEN

We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Oligopéptidos/farmacología , Candida albicans/crecimiento & desarrollo
11.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38317643

RESUMEN

Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.


Asunto(s)
Microbiota , Phytophthora , Lactuca , Phytophthora/genética , ARN Ribosómico 16S/genética , Raíces de Plantas/microbiología , Microbiota/genética , Rizosfera , Flavobacterium/genética , Microbiología del Suelo
12.
Hortic Res ; 11(2): uhae002, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38371632

RESUMEN

Apple scab disease, caused by the fungus Venturia inaequalis, endangers commercial apple production globally. It is predominantly managed by frequent fungicide sprays that can harm the environment and promote the development of fungicide-resistant strains. Cultivation of scab-resistant cultivars harboring diverse qualitative Rvi resistance loci and quantitative trait loci associated with scab resistance could reduce the chemical footprint. A comprehensive understanding of the host-pathogen interaction is, however, needed to efficiently breed cultivars with enhanced resistance against a variety of pathogenic strains. Breeding efforts should not only encompass pyramiding of Rvi loci and their corresponding resistance alleles that directly or indirectly recognize pathogen effectors, but should also integrate genes that contribute to effective downstream defense mechanisms. This review provides an overview of the phenotypic and genetic aspects of apple scab resistance, and currently known corresponding defense mechanisms. Implementation of recent "-omics" approaches has provided insights into the complex network of physiological, molecular, and signaling processes that occur before and upon scab infection, thereby revealing the importance of both constitutive and induced defense mechanisms. Based on the current knowledge, we outline advances toward more efficient introgression of enhanced scab resistance into novel apple cultivars by conventional breeding or genetic modification techniques. However, additional studies integrating different "-omics" approaches combined with functional studies will be necessary to unravel effective defense mechanisms as well as key regulatory genes underpinning scab resistance in apple. This crucial information will set the stage for successful knowledge-based breeding for enhanced scab resistance.

13.
Plant Cell Environ ; 36(11): 1992-2007, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23534608

RESUMEN

The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens.


Asunto(s)
Botrytis/fisiología , Perfilación de la Expresión Génica , Lactuca/genética , Lactuca/microbiología , Análisis de Secuencia de ARN , Arabidopsis/genética , Arabidopsis/microbiología , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/genética
14.
J Exp Bot ; 64(17): 5297-307, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24043855

RESUMEN

Although evidence has accumulated on the role of plant peptides in the response to external conditions, the number of peptide-encoding genes in the genome is still underestimated. Using tiling arrays, we identified 176 unannotated transcriptionally active regions (TARs) in Arabidopsis thaliana that were induced upon oxidative stress generated by the herbicide paraquat (PQ). These 176 TARs could be translated into 575 putative oxidative stress-induced peptides (OSIPs). A high-throughput functional assay was used in the eukaryotic model organism Saccharomyces cerevisiae allowing us to test for bioactive peptides that increase oxidative stress tolerance. In this way, we identified three OSIPs that, upon overexpression in yeast, resulted in a significant rise in tolerance to hydrogen peroxide (H2O2). For one of these peptides, the decapeptide OSIP108, exogenous application to H2O2-treated yeast also resulted in significantly increased survival. OSIP108 is contained within a pseudogene and is induced in A. thaliana leaves by both the reactive oxygen species-inducer PQ and the necrotrophic fungal pathogen Botrytis cinerea. Moreover, infiltration and overexpression of OSIP108 in A. thaliana leaves resulted in increased tolerance to treatment with PQ. In conclusion, the identification and characterization of OSIP108 confirms the validity of our high-throughput approach, based on tiling array analysis in A. thaliana and functional screening in yeast, to identify bioactive peptides.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Péptidos/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Biblioteca de Genes , Peróxido de Hidrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Estrés Oxidativo , Péptidos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología
15.
Int J Food Microbiol ; 402: 110313, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37421873

RESUMEN

Botrytis cinerea is a devastating pathogen that can cause huge postharvest losses of strawberry. Although this fungus usually infects strawberries through their flowers, symptoms mainly appear when fruit are fully mature. A fast and sensitive method to detect and quantify the fungal infection, prior to symptom development, is, therefore, needed. In this study, we explore the possibility of using the strawberry volatilome to identify biomarkers for B. cinerea infection. Strawberry flowers were inoculated with B. cinerea to mimic the natural infection. First, quantitative polymerase chain reaction (qPCR) was used to quantify B. cinerea in the strawberry fruit. The detection limit of qPCR for B. cinerea DNA extracted from strawberries was 0.01 ng. Subsequently, changes in the fruit volatilome at different fruit developmental stages were characterized using gas chromatography - mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS). Based on GC-MS data, 1-octen-3-ol produced by B. cinerea was confirmed as a potential biomarker of B. cinerea infection. Moreover, the product ion NO+ 127, obtained by SIFT-MS measurements, was proposed as a potential biomarker for B. cinerea infection by comparing its relative level with that of 1-octen-3-ol (obtained by GC-MS) and B. cinerea (obtained by qPCR). Separate PLS regressions were carried out for each developmental stages, and 11 product ions were significantly altered at all developmental stages. Finally, PLS regressions using these 11 ions as variables allowed the discrimination between samples containing different amount of B. cinerea. This work showed that profiling the fruit's volatilome using SIFT-MS can be used as a potential alternative to detect B. cinerea during the quiescent stage of B. cinerea infection prior to symptom development. Moreover, the corresponding compounds of potential biomarkers suggest that the volatile changes caused by B. cinerea infection may contribute to strawberry defense.


Asunto(s)
Fragaria , Fragaria/microbiología , Frutas/microbiología , Espectrometría de Masas , Botrytis , Enfermedades de las Plantas/microbiología
16.
Front Plant Sci ; 14: 1069971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890892

RESUMEN

Introduction: Peanut (Arachis hypogaea L.) is a widespread oilseed crop of high agricultural importance in tropical and subtropical areas. It plays a major role in the food supply in the Democratic Republic of Congo (DRC). However, one major constraint in the production of this plant is the stem rot (white mold or southern blight) disease caused by Athelia rolfsii which is so far controlled mainly using chemicals. Considering the harmful effect of chemical pesticides, the implementation of eco-friendly alternatives such as biological control is required for disease management in a more sustainable agriculture in the DRC as in the other developing countries concerned. Bacillus velezensis is among the rhizobacteria best described for its plant protective effect notably due to the production of a wide range of bioactive secondary metabolites. In this work, we wanted to evaluate the potential of B. velezensis strain GA1 at reducing A. rolfsii infection and to unravel the molecular basis of the protective effect. Results and discussion: Upon growth under the nutritional conditions dictated by peanut root exudation, the bacterium efficiently produces the three types of lipopeptides surfactin, iturin and fengycin known for their antagonistic activities against a wide range of fungal phytopathogens. By testing a range of GA1 mutants specifically repressed in the production of those metabolites, we point out an important role for iturin and another unidentified compound in the antagonistic activity against the pathogen. Biocontrol experiments performed in greenhouse further revealed the efficacy of B. velezensis to reduce peanut disease caused by A. rolfsii both via direct antagonism against the fungus and by stimulating systemic resistance in the host plant. As treatment with pure surfactin yielded a similar level of protection, we postulate that this lipopeptide acts as main elicitor of peanut resistance against A. rolfsii infection.

17.
J Am Soc Mass Spectrom ; 34(10): 2407-2412, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37552044

RESUMEN

Selected ion flow tube-mass spectrometry (SIFT-MS) is an analytical technique for volatile detection and quantification. SIFT-MS can be applied in a "white box" approach, measuring concentrations of target compounds, or as a "black box" fingerprinting technique, scanning all product ions during a full scan. Combining SIFT-MS full scan data acquired from multibatches or large-scale experiments remains problematic due to signal fluctuation over time. The standard approach of normalizing full scan data to the total signal intensity was insufficient. This study proposes a new approach to correct SIFT-MS fingerprinting data. In this concept, all of the product ions from a full scan are considered individual compounds for which notional concentrations can be calculated. Converting ion count rates into notional analyte concentrations accounts for any changes in the instrument parameters. The benefits of the proposed approach are demonstrated on three years of data from both multibatches and long-term experiments showing a significant reduction of system-induced fluctuations providing a better focus on the changes of interest.

18.
Front Microbiol ; 13: 797234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633666

RESUMEN

Apple is typically stored under low temperature and controlled atmospheric conditions to ensure a year round supply of high quality fruit for the consumer. During storage, losses in quality and quantity occur due to spoilage by postharvest pathogens. One important postharvest pathogen of apple is Botrytis cinerea. The fungus is a broad host necrotroph with a large arsenal of infection strategies able to infect over 1,400 different plant species. We studied the apple-B. cinerea interaction to get a better understanding of the defense response in apple. We conducted an RNAseq experiment in which the transcriptome of inoculated and non-inoculated (control and mock) apples was analyzed at 0, 1, 12, and 28 h post inoculation. Our results show extensive reprogramming of the apple's transcriptome with about 28.9% of expressed genes exhibiting significant differential regulation in the inoculated samples. We demonstrate the transcriptional activation of pathogen-triggered immunity and a reprogramming of the fruit's metabolism. We demonstrate a clear transcriptional activation of secondary metabolism and a correlation between the early transcriptional activation of the mevalonate pathway and reduced susceptibility, expressed as a reduction in resulting lesion diameters. This pathway produces the building blocks for terpenoids, a large class of compounds with diverging functions including defense. 1-MCP and hot water dip treatment are used to further evidence the key role of terpenoids in the defense and demonstrate that ethylene modulates this response.

19.
Front Plant Sci ; 13: 912667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874021

RESUMEN

The necrotrophic fungus Botrytis cinerea is a major threat to strawberry cultivation worldwide. By screening different Fragaria vesca genotypes for susceptibility to B. cinerea, we identified two genotypes with different resistance levels, a susceptible genotype F. vesca ssp. vesca Tenno 3 (T3) and a moderately resistant genotype F. vesca ssp. vesca Kreuzkogel 1 (K1). These two genotypes were used to identify the molecular basis for the increased resistance of K1 compared to T3. Fungal DNA quantification and microscopic observation of fungal growth in woodland strawberry leaves confirmed that the growth of B. cinerea was restricted during early stages of infection in K1 compared to T3. Gene expression analysis in both genotypes upon B. cinerea inoculation suggested that the restricted growth of B. cinerea was rather due to the constitutive resistance mechanisms of K1 instead of the induction of defense responses. Furthermore, we observed that the amount of total phenolics, total flavonoids, glucose, galactose, citric acid and ascorbic acid correlated positively with higher resistance, while H2O2 and sucrose correlated negatively. Therefore, we propose that K1 leaves are more resistant against B. cinerea compared to T3 leaves, prior to B. cinerea inoculation, due to a lower amount of innate H2O2, which is attributed to a higher level of antioxidants and antioxidant enzymes in K1. To conclude, this study provides important insights into the resistance mechanisms against B. cinerea, which highly depend on the innate antioxidative profile and specialized metabolites of woodland strawberry leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA