Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
2.
Nature ; 583(7816): 400-405, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669695

RESUMEN

Mechanical interlocking of molecules (catenation) is a nontrivial challenge in modern synthetic chemistry and materials science1,2. One strategy to achieve catenation is the design of pre-annular molecules that are capable of both efficient cyclization and of pre-organizing another precursor to engage in subsequent interlocking3-9. This task is particularly difficult when the annular target is composed of a large ensemble of molecules, that is, when it is a supramolecular assembly. However, the construction of such unprecedented assemblies would enable the visualization of nontrivial nanotopologies through microscopy techniques, which would not only satisfy academic curiosity but also pave the way to the development of materials with nanotopology-derived properties. Here we report the synthesis of such a nanotopology using fibrous supramolecular assemblies with intrinsic curvature. Using a solvent-mixing strategy, we kinetically organized a molecule that can elongate into toroids with a radius of about 13 nanometres. Atomic force microscopy on the resulting nanoscale toroids revealed a high percentage of catenation, which is sufficient to yield 'nanolympiadane'10, a nanoscale catenane composed of five interlocked toroids. Spectroscopic and theoretical studies suggested that this unusually high degree of catenation stems from the secondary nucleation of the precursor molecules around the toroids. By modifying the self-assembly protocol to promote ring closure and secondary nucleation, a maximum catenation number of 22 was confirmed by atomic force microscopy.

3.
Plant J ; 116(2): 541-557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37496362

RESUMEN

The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.

4.
Plant Cell ; 33(6): 2015-2031, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751120

RESUMEN

Acquisition of nutrients from different species is necessary for pathogen colonization. Iron is an essential mineral nutrient for nearly all organisms, but little is known about how pathogens manipulate plant hosts to acquire iron. Here, we report that AvrRps4, an effector protein delivered by Pseudomonas syringae bacteria to plants, interacts with and targets the plant iron sensor protein BRUTUS (BTS) to facilitate iron uptake and pathogen proliferation in Arabidopsis thaliana. Infection of rps4 and eds1 by P. syringae pv. tomato (Pst) DC3000 expressing AvrRps4 resulted in iron accumulation, especially in the plant apoplast. AvrRps4 alleviates BTS-mediated degradation of bHLH115 and ILR3(IAA-Leucine resistant 3), two iron regulatory proteins. In addition, BTS is important for accumulating immune proteins Enhanced Disease Susceptibility1 (EDS1) at both the transcriptional and protein levels upon Pst (avrRps4) infections. Our findings suggest that AvrRps4 targets BTS to facilitate iron accumulation and BTS contributes to RPS4/EDS1-mediated immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas Bacterianas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Ubiquitina-Proteína Ligasas/genética
5.
Plant J ; 110(5): 1415-1432, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35324052

RESUMEN

Arabidopsis pathogen effector-triggered immunity (ETI) is controlled by a family of three lipase-like proteins (EDS1, PAD4, and SAG101) and two subfamilies of HET-S/LOB-B (HeLo)-domain "helper" nucleotide-binding/leucine-rich repeats (ADR1s and NRG1s). EDS1-PAD4 dimers cooperate with ADR1s, and EDS1-SAG101 dimers with NRG1s, in two separate defense-promoting modules. EDS1-PAD4-ADR1 and EDS1-SAG101-NRG1 complexes were detected in immune-activated leaf extracts but the molecular determinants for specific complex formation and function remain unknown. EDS1 signaling is mediated by a C-terminal EP domain (EPD) surface surrounding a cavity formed by the heterodimer. Here we investigated whether the EPDs of PAD4 and SAG101 contribute to EDS1 dimer functions. Using a structure-guided approach, we undertook a comprehensive mutational analysis of Arabidopsis PAD4. We identify two conserved residues (Arg314 and Lys380) lining the PAD4 EPD cavity that are essential for EDS1-PAD4-mediated pathogen resistance, but are dispensable for the PAD4-mediated restriction of green peach aphid infestation. Positionally equivalent Met304 and Arg373 at the SAG101 EPD cavity are required for EDS1-SAG101 promotion of ETI-related cell death. In a PAD4 and SAG101 interactome analysis of ETI-activated tissues, PAD4R314A and SAG101M304R EPD variants maintain interaction with EDS1 but lose association, respectively, with helper nucleotide-binding/leucine-rich repeats ADR1-L1 and NRG1.1, and other immune-related proteins. Our data reveal a fundamental contribution of similar but non-identical PAD4 and SAG101 EPD surfaces to specific EDS1 dimer protein interactions and pathogen immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Leucina/metabolismo , Nucleótidos/metabolismo , Enfermedades de las Plantas , Inmunidad de la Planta/genética
7.
Mol Plant Microbe Interact ; 33(4): 693-703, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31876224

RESUMEN

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) are sequence-related lipase-like proteins that function as a complex to regulate defense responses in Arabidopsis by both salicylic acid-dependent and independent pathways. Here, we describe a gain-of-function mutation in PAD4 (S135F) that enhances resistance and cell death in response to infection by the powdery mildew pathogen Golovinomyces cichoracearum. The mutant PAD4 protein accumulates to wild-type levels in Arabidopsis cells, thus these phenotypes are unlikely to be due to PAD4 over accumulation. The phenotypes are similar to loss-of-function mutations in the protein kinase EDR1 (Enhanced Disease Resistance1), and previous work has shown that loss of PAD4 or EDS1 suppresses edr1-mediated phenotypes, placing these proteins downstream of EDR1. Here, we show that EDR1 directly associates with EDS1 and PAD4 and inhibits their interaction in yeast and plant cells. We propose a model whereby EDR1 negatively regulates defense responses by interfering with the heteromeric association of EDS1 and PAD4. Our data indicate that the S135F mutation likely alters an EDS1-independent function of PAD4, potentially shedding light on a yet-unknown PAD4 signaling function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hidrolasas de Éster Carboxílico , Muerte Celular , Proteínas de Unión al ADN , Resistencia a la Enfermedad , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascomicetos/fisiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Ácido Salicílico/metabolismo
8.
Mol Plant Microbe Interact ; 33(2): 328-335, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31702436

RESUMEN

Plants have evolved mechanisms to protect themselves against pathogenic microbes and insect pests. In Arabidopsis, the immune regulator PAD4 functions with its cognate partner EDS1 to limit pathogen growth. PAD4, independently of EDS1, reduces infestation by green peach aphid (GPA). How PAD4 regulates these defense outputs is unclear. By expressing the N-terminal PAD4 lipase-like domain (PAD4LLD) without its C-terminal EDS1-PAD4 (EP) domain, we interrogated PAD4 functions in plant defense. Here, we show that transgenic expression of PAD4LLD in Arabidopsis is sufficient for limiting GPA infestation but not for conferring basal and effector-triggered pathogen immunity. This suggests that the C-terminal PAD4 EP domain is necessary for EDS1-dependent immune functions but is dispensable for aphid resistance. Moreover, PAD4LLD is not sufficient to interact with EDS1, indicating the PAD4-EP domain is required for stable heterodimerization. These data provide molecular evidence that PAD4 has domain-specific functions.


Asunto(s)
Áfidos , Arabidopsis , Resistencia a la Enfermedad , Dominios Proteicos , Animales , Áfidos/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos/genética , Dominios Proteicos/fisiología
9.
Chemistry ; 26(41): 8997-9004, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32350945

RESUMEN

Beyond phenomenon, self-assembly of synthetic molecules, is now becoming an essential tool to design supramolecular materials not only in the thermodynamically stable state but also in kinetically trapped states. However, an approach to design complex self-assembly processes comprising different types of self-assembled states remains elusive. Herein, an example of such systems is demonstrated based on a unique supramolecular polymer mediated by supermacrocyclization of hydrogen-bonding π-conjugated molecules. By adding an aromatic solvent into nonpolar solutions of the monomer, spontaneous nucleation triggered by supermacrocyclization was suppressed so that isothermal supramolecular polymerization could be achieved from kinetically formed topological variants and amorphous agglomerates to afford helicoidal structures hitherto obtainable only with very slow cooling of a hot solution. By increasing the proportion of aromatic solvent further, another self-assembly path was found, based on competing extended hydrogen-bonded motifs affording crystalline nanowires.

10.
Chemistry ; 26(49): 11135-11140, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428357

RESUMEN

Controlled self-organization of organic semiconductor molecules into specifically desired architectures on substrates of interest is one of the most imperative challenges faced in the fabrication of high-performance organic electronic devices. Herein, we report the self-organization of a star-shaped molecule FDT-8 into a highly favored structure, namely, a vertical stack. Thermal annealing of films of FDT-8 deposited on PEDOT: PSS coated ITO substrates was observed to assist the organization of the molecules into columnar stacks. A significant enhancement in the hole (≈50-fold) and the electron (≈13-fold) carrier mobility was observed in single-carrier devices upon thermal annealing that could be attributed to the aforementioned self-organization. The ability of these molecules to spontaneously self-organize was utilized to fabricate bilayer light-emitting devices.

11.
J Struct Biol ; 208(3): 107390, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550533

RESUMEN

In plant innate immunity, enhanced disease susceptibility 1 (EDS1) integrates all pathogen-induced signals transmitted by TIR-type NLR receptors. Driven by an N-terminal α/ß-hydrolase-fold domain with a protruding interaction helix, EDS1 assembles with two homologs, phytoalexin-deficient 4 (PAD4) and senescence-associated gene 101 (SAG101). The resulting heterodimers are critical for EDS1 function and structurally well characterized. Here, we resolve solution and crystal structures of unbound Arabidopsis thaliana EDS1 (AtEDS1) using nanobodies for crystallization. These structures, together with gel filtration and immunoprecipitation data, show that PAD4/SAG101-unbound AtEDS1 is stable as a monomer and does not form the homodimers recorded in public databases. Its PAD4/SAG101 anchoring helix is disordered unless engaged in protein/protein interactions. As in the complex with SAG101, monomeric AtEDS1 has a substrate-inaccessible esterase triad with a blocked oxyanion hole and without space for a covalent acyl intermediate. These new structures suggest that the AtEDS1 monomer represents an inactive or pre-activated ground state.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/química , Cromatografía en Gel , Cristalización , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Plantas Modificadas Genéticamente , Conformación Proteica , Dispersión del Ángulo Pequeño , Anticuerpos de Dominio Único , Nicotiana/genética , Difracción de Rayos X
12.
Eur Ann Allergy Clin Immunol ; 51(2): 75-79, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30832470

RESUMEN

Summary: Allergic bronchopulmonary mycosis (ABPM) is a clinical syndrome associated with immune sensitivity to various fungi that colonize the airways. Early diagnosis and treatment with systemic corticosteroids is the key in preventing the progression of the disease to irreversible lung fibrosis. Although Aspergillus has progressively gained recognition as a causative agent in past few decades, other fungi, that have been reported to cause ABPM, are not yet widely evaluated. We studied hundred and two patients with asthma for occurrence of ABPM. Patients were tested for cutaneous hypersensitivity and serum precipitin to 12 common fungal antigens. The positive cases were further evaluated for ABPM using standard criteria. Out of 102 asthma patients screened, 18 patients had either skin prick test (SPT) and/or serum precipitin positive. While 14 patients were SPT positive for one or more fungal antigen, two patients were serum precipitin positive for one or more fungi. Two patients had both serum precipitin positive as well as SPT positive. Six (5.8%) patients were diagnosed as ABPM as they fulfilled the criteria. Three of these were because of Aspergillus sp. Two were because of fungi other than Aspergillus namely Schizophyllum and Curvularia. One patient had ABPM because of both Aspergillus and Curvularia. In our study absolute eosinophil count (AEC), total IgE, serum precipitin and SPT had sensitivity of 100%, 100% 50% and 83.3% respectively for diagnosing ABPM. The specificity of these tests was 44.79%, 64.58% 98.96% and 88.54% respectively. Specfic IgE was positive in 50% of patients with either serum precipitin or SPT positivity. SPT or serum precipitin followed by specific IgE had sensitivity of 100% and specificity of 96.88% for diagnosing ABPM. SPT alone followed by Specific IgE had a sensitivity of 83.33% and specificity of 96.88% for diagnosing ABPM. We found that fungi other than Aspergillus such as schizophyllum, and curvularia, can be implicated in ABPM. Multiple fungal agents may be responsible for ABPM in an individual. There is a subset of patients of BA who have fungal sensitization but do not fulfil the criteria for ABPM. SPT was the single most sensitive and specific test, AEC >350 and total IgE more than 417IU were most sensitive tests and SPT followed by specific IgE was most effective strategy for diagnosing ABPM.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Pruebas de Precipitina/métodos , Aspergilosis Pulmonar/diagnóstico , Aspergilosis Pulmonar/etiología , Pruebas Cutáneas/métodos , Anticuerpos Antifúngicos/sangre , Estudios Transversales , Hongos/inmunología , Humanos , Aspergilosis Pulmonar/inmunología , Reproducibilidad de los Resultados , Schizophyllum/inmunología , Sensibilidad y Especificidad
13.
Chemistry ; 23(22): 5270-5280, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28120455

RESUMEN

Intricately designed π-conjugated molecules containing interactive groups can be used to generate supramolecular polymers with outstanding structural and functional properties. To construct such supramolecular polymers, the non-covalent synthesis of supermacrocyclic monomers from relatively simple molecules represents an attractive strategy, although this has been rarely exploited. Here, we report the supramolecular polymerization of two barbiturate-naphthalene derivatives that circularly hexamerize by hydrogen bonding. The two molecules contain an aliphatic "wedge" unit with either an ether or ester linkage. This subtle difference is amplified into distinct features both in terms of the morphology of the supramolecular polymers and the polymerization process. The degrees of conformational freedom of the wedge unit determine the stacking of the supermacrocycles, as is evident from 2D X-ray diffraction analyses on the aligned fibers. The differences in stacking impart the supramolecular polymer fibers with different morphological features (cylindrical or helical), which are reflected in the properties of concentrated solutions (suspension or gel). The degrees of conformational freedom of the wedge unit also affect the polymerization kinetics, in which the more flexible ether linkage induces pathway complexity by the formation of off-pathway aggregates.

15.
Antimicrob Agents Chemother ; 59(4): 2169-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645850

RESUMEN

The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), (1)H and (13)C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial.


Asunto(s)
Antibacterianos/farmacología , Calostro/química , Oligosacáridos/farmacología , Percepción de Quorum/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Secuencia de Carbohidratos , Femenino , Hemólisis , Caballos , Humanos , Indoles/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Oligosacáridos/química , Embarazo , Factores de Virulencia/metabolismo
16.
Phys Chem Chem Phys ; 17(28): 18768-79, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26118371

RESUMEN

Detailed photophysical properties of cyano and mono (MA)/bis alkoxy (DA) substituted diphenylacetylene moieties with different alkyl chain lengths (methyl (1), octyl (8) and dodecyl (12)) were investigated in solution and the solid state in an effort to determine the effect of self-aggregation on these properties. The solvated molecules showed a minimal bathochromic shift with an increase of solvent polarity in their absorption spectra, whereas a significant shift was observed in the emission spectra. This could be attributed to the relatively low change in dipole moment between ground and Franck-Condon excited states and luminescence arising from the intramolecular charge transfer state with a dipole moment significantly higher than that of the ground state. In solid state the emission quantum yields of these materials were significantly higher than in solution. For DA1, polymorphic materials with distinct photophysical properties were obtained. The DA1 materials obtained by fast precipitation (DA1) showed broad fluorescence with peaks at 398, 467 and 535 nm upon excitation at different wavelengths. Detailed analysis of absorption, emission and excitation spectra and lifetime experiments indicated that these peaks could be attributed to the monomer, J- and H-type aggregates respectively. Whereas the crystals obtained by slow crystallization (DA1C) showed only one emission peak at around 396 nm attributed to the monomer. This is supported by the single crystal X-ray structure which consists of a monomer molecule having minimal interaction with nearest neighbour molecules.


Asunto(s)
Acetileno/análogos & derivados , Acetileno/química , Cristalografía por Rayos X , Electrones , Conformación Molecular , Teoría Cuántica , Soluciones/química , Espectrometría de Fluorescencia
17.
J Am Chem Soc ; 136(14): 5416-23, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24627982

RESUMEN

A series of highly luminescent oxadiazole-based stilbene molecules (OXD4, OXD8, OXD10, and OXD12) exhibiting interesting enantiotropic liquid crystalline and gelation properties have been synthesized and characterized. The molecules possessing longer alkyl substituents, OXD10 and OXD12, possess a pseudodisc shape and are capable of behaving as supergelators in nonpolar solvents, forming self-standing gels with very high thermal and mechanical stability. Notably the self-assembly of these molecules, which do not possess any hydrogen-bonding motifs normally observed in most reported supergelators, is driven purely by π-stacking interactions of the constituent molecules. The d-spacing ratios estimated from XRD analysis of OXD derivatives possessing longer alkyl chains show that the molecules are arranged in a columnar fashion in the mesogens and the self-assembled nanofibers formed in the gelation process.

18.
Indian J Crit Care Med ; 18(9): 591-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25249743

RESUMEN

BACKGROUND AND AIMS: With the expanding use of diagnostic and therapeutic radiological modalities in critically ill patients, doctors working in Intensive Care Units (ICUs) are increasingly exposed to ionizing radiation. This risk of radiation exposure occurs not only during bedside radiologic procedures, but also when ICU physicians accompany patients to radiology suites. The aim of this study was to quantify levels of radiation exposure among medical professionals working in the ICU. MATERIALS AND METHODS: The study was carried out prospectively over 6 months in the ICU of a tertiary-referral cancer hospital. Two teams consisting of 4 ICU resident doctors each were instructed to wear thermoluminescent dosimeters (TLDs) during their duty shifts. Standard radiation protection precautions were used throughout the study period. TLDs were also placed in selected areas of the ICU to measure the amount of scattered radiation. TLDs were analyzed at the end of every 3 months. RESULTS: The readings recorded on TLDs placed in the ICU were almost immeasurable. The mean value of residents' radiation exposure was 0.059 mSv, though the highest individual reading approached 0.1 mSv. The projected maximum yearly radiation exposure was 0.4 mSv. CONCLUSIONS: If standard radiation safety precautions are followed, the cumulative radiation exposure to ICU resident doctors is well within permissible limits and is not a cause of concern. However, with the increasing use of radiological procedures in the management of critically ill patients, there is a need to repeat such audits periodically to monitor radiation exposure.

19.
Behav Brain Res ; 472: 115154, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038519

RESUMEN

INTRODUCTION: This research evaluated the feasibility of a hybrid SSVEP + P300 brain computer interface (BCI) for controlling the movement of an avatar in a virtual reality (VR) gaming environment (VR + BCI). Existing VR + BCI gaming environments have limitations, such as visual fatigue, a lower communication rate, minimum accuracy, and poor system comfort. Hence, there is a need for an optimized hybrid BCI system that can simultaneously evoke the strongest P300 and SSVEP potentials in the cortex. METHODS: A BCI headset was coupled with a VR headset to generate a VR + BCI environment. The author developed a VR game in which the avatar's movement is controlled using the user's cortical responses with the help of a BCI headset. Specifically designed visual stimuli were used in the proposed system to elicit the strongest possible responses from the user's brain. The proposed system also includes an auditory feedback mechanism to facilitate precise avatar movement. RESULTS AND CONCLUSIONS: Conventional P300 BCI and SSVEP BCI were also used to control the movements of the avatar, and their performance metrics were compared to those of the proposed system. The results demonstrated that the hybrid SSVEP + P300 BCI system was superior to the other systems for controlling avatar movement.

20.
Brain Res ; : 149092, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897536

RESUMEN

INTRODUCTION: This study proposes a hybrid brain-computer interface (BCI) system that simultaneously evokes steady-state visual evoked potentials (SSVEP) and event-related potentials (P300). The goal of this study was to improve the performance of the current hybrid SSVEP + P300 BCI systems by incorporating inverted faces into visual stimuli. METHODS: In this study, upright and inverted faces were added to visual stimulus to elicit stronger cortical responses in a hybrid SSVEP + P300 BCI. We also considered triggering the P300 signals with facial stimuli and the SSVEP signals with non-facial stimuli. We have tested four paradigms: the upright face paradigm (UF), the inverted face paradigm (IF), the upright face and flicker paradigm (UFF), and the inverted face and flicker paradigm (IFF). RESULTS AND CONCLUSIONS: The results showed that the IFF paradigm evoked more robust cortical responses, which led to enhanced system accuracy and ITR. The IFF paradigm had an average accuracy of 96.6% and a system communication rate of 26.45 bits per second. The UFF paradigm is the best candidate for BCI applications among other paradigms because it provides maximum comfort while maintaining a reasonable ITR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA