Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Divers ; 26(1): 39-50, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33216257

RESUMEN

An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.


Asunto(s)
Tripanocidas , Trypanosoma cruzi , Cisteína Endopeptidasas , Simulación del Acoplamiento Molecular , Proteínas Protozoarias , Relación Estructura-Actividad , Tripanocidas/farmacología
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077439

RESUMEN

Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.


Asunto(s)
Tripanocidas , Trypanosoma cruzi , Animales , Bencimidazoles/química , Bencimidazoles/farmacología , Humanos , Ligandos , Mamíferos/metabolismo , Simulación del Acoplamiento Molecular , Triosa-Fosfato Isomerasa/metabolismo , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/metabolismo
3.
Mini Rev Med Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38910486

RESUMEN

Chikungunya is a re-emerging viral infection of worldwide concern, and new antiviral therapeutics are necessary to combat this disease. Inhibitors of the non-structural protein 1 (NsP1), which shows Methyltransferase (MTase) activity and plays a crucial in the Chikungunya virus (ChikV) replication, are exhibiting promising results. This review aimed to describe recent advances in the development of NsP1 inhibitors for the treatment of ChikV disease. High-throughput screening of novel ChikV NsP1 inhibitors has been widely performed for the identification of new molecule hits through fluorescence polarization, Western blotting, ELISA-based assay, and capillary electrophoresis assays. Additionally, cell-based assays confirmed that the inhibition of ChikV NsP1 abolishes viral replication. In summary, pyrimidine and pyrimidin-7(6H)-one derivatives, GTP and nucleoside analogs have been demonstrated to show inhibitory activity and are considered promising scaffolds that provide useful knowledge for the research and development of new NsP1 inhibitors as potential treatment of Chikungunya re-emerging disease.

.

4.
Med Chem ; 20(5): 546-553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204279

RESUMEN

BACKGROUND: In the last years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 760 million infections and 6.9 million deaths. Currently, remains a public health problem with limited pharmacological treatments. Among the virus drug targets, the SARS-CoV-2 spike protein attracts the development of new anti-SARS-CoV-2 agents. OBJECTIVE: The aim of this work was to identify new compounds derived from natural products (BIOFACQUIM and Selleckchem databases) as potential inhibitors of the spike receptor binding domain (RBD)-ACE2 binding complex. METHODS: Molecular docking, molecular dynamics simulations, and ADME-Tox analysis were performed to screen and select the potential inhibitors. ELISA-based enzyme assay was done to confirm our predictive model. RESULTS: Twenty compounds were identified as potential binders of RBD of the spike protein. In vitro assay showed compound B-8 caused 48% inhibition at 50 µM, and their binding pattern exhibited interactions via hydrogen bonds with the key amino acid residues present on the RBD. CONCLUSION: Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales , Productos Biológicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , Productos Biológicos/química , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
5.
Pharmaceutics ; 16(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38794275

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast-spreading viral pathogen and poses a serious threat to human health. New SARS-CoV-2 variants have been arising worldwide; therefore, is necessary to explore more therapeutic options. The interaction of the viral spike (S) protein with the angiotensin-converting enzyme 2 (ACE2) host receptor is an attractive drug target to prevent the infection via the inhibition of virus cell entry. In this study, Ligand- and Structure-Based Virtual Screening (LBVS and SBVS) was performed to propose potential inhibitors capable of blocking the S receptor-binding domain (RBD) and ACE2 interaction. The best five lead compounds were confirmed as inhibitors through ELISA-based enzyme assays. The docking studies and molecular dynamic (MD) simulations of the selected compounds maintained the molecular interaction and stability (RMSD fluctuations less than 5 Å) with key residues of the S protein. The compounds DRI-1, DRI-2, DRI-3, DRI-4, and DRI-5 efficiently block the interaction between the SARS-CoV-2 spike protein and receptor ACE2 (from 69.90 to 99.65% of inhibition) at 50 µM. The most potent inhibitors were DRI-2 (IC50 = 8.8 µM) and DRI-3 (IC50 = 2.1 µM) and have an acceptable profile of cytotoxicity (CC50 > 90 µM). Therefore, these compounds could be good candidates for further SARS-CoV-2 preclinical experiments.

6.
ChemMedChem ; : e202400241, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136604

RESUMEN

A series of novel 4-acetyl-1,3,4-oxadiazole derivatives was designed and synthesized for their biological evaluation in vitro against Trypanosoma cruzi and Leishmania mexicana. Additionally, compounds were evaluated by molecular docking on the cruzain of T. cruzi (TcCz) and the cysteine protease B (CPB) of L. mexicana (LmCPB) to know their potential mechanism of binding. Compound OX-12 had better trypanocidal activity against NINOA (IC50= 10.5 µM) and A1 (IC50= 21.7 µM) T. cruzi strains that reference drug benznidazole (IC50= 30.3 µM and 39.8 µM, respectively). Compound OX-2 had the best biological activity against L. mexicana in M379 (IC50= 11.9 µM) and FCQEPS (IC50= 34.0 µM) strains that the reference drug glucantime (IC50 ˃120 µM). All the compounds showed important interactions with residues on the active site of TcCz (Gly66, Trp26, Leu67, and Ala138) and LmCPB (Gly67, Asn62, Leu68, and Ala140). Finally, the molecular dynamics simulations of the compound OX-12 shown moderate stability from 40 to 115 ns with an RMSD value of 6.5 Å. Meanwhile, compound OX-2 showed a minor stability in complex with CPB from 25 to 200 ns of simulation (RMSD <9 Å). These results encourage to develop more potent and efficient trypanocidal and leishmanicidal agents using the 1,3,4-oxadiazole scaffold.

7.
J Mol Model ; 29(6): 180, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195391

RESUMEN

CONTEXT: Quinoxaline 1,4-di-N-oxide is a scaffold with a wide array of biological activities, particularly its use to develop new antiparasitic agents. Recently, these compounds have been described as trypanothione reductase (TR), triosephosphate isomerase (TIM), and cathepsin-L (CatL) inhibitors from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica, respectively. METHODS: Therefore, the main objective of this work was to analyze quinoxaline 1,4-di-N-oxide derivatives of two databases (ZINC15 and PubChem) and literature by molecular docking, dynamic simulation and complemented by MMPBSA, and contact analysis of molecular dynamics' trajectory on the active site of the enzymes to know their potential effect inhibitory. Interestingly, compounds Lit_C777 and Zn_C38 show preference as potential TcTR inhibitors over HsGR, with favorable energy contributions from residues including Pro398 and Leu399 from Z-site, Glu467 from γ-Glu site, and His461, part of the catalytic triad. Compound Lit_C208 shows potential selective inhibition against TvTIM over HsTIM, with favorable energy contributions toward TvTIM catalytic dyad, but away from HsTIM catalytic dyad. Compound Lit_C388 was most stable in FhCatL with a higher calculated binding energy by MMPBSA analysis than HsCatL, though not interacting with catalytic dyad, holding favorable energy contribution from residues oriented at FhCatL catalytic dyad. Therefore, these kinds of compounds are good candidates to continue researching and confirming their activity through in vitro studies as new selective antiparasitic agents.


Asunto(s)
Fasciola hepatica , Trichomonas vaginalis , Trypanosoma cruzi , Animales , Simulación del Acoplamiento Molecular , Antiparasitarios
8.
Eur J Med Chem ; 252: 115290, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36958266

RESUMEN

Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.


Asunto(s)
Arbovirus , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Simulación del Acoplamiento Molecular , Arbovirus/metabolismo , Proteínas no Estructurales Virales , Antivirales/química , Metiltransferasas , Dengue/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológico
9.
Curr Med Chem ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37909441

RESUMEN

BACKGROUND: Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3- transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE: In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION: According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.

10.
Pharmaceutics ; 15(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631260

RESUMEN

Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.

11.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37111300

RESUMEN

Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.

12.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986489

RESUMEN

Leishmania mexicana (L. mexicana) is a causal agent of cutaneous leishmaniasis (CL), a "Neglected disease", for which the search for new drugs is a priority. Benzimidazole is a scaffold used to develop antiparasitic drugs; therefore, it is interesting molecule against L. mexicana. In this work, a ligand-based virtual screening (LBVS) of the ZINC15 database was performed. Subsequently, molecular docking was used to predict the compounds with potential binding at the dimer interface of triosephosphate isomerase (TIM) of L. mexicana (LmTIM). Compounds were selected on binding patterns, cost, and commercial availability for in vitro assays against L. mexicana blood promastigotes. The compounds were analyzed by molecular dynamics simulation on LmTIM and its homologous human TIM. Finally, the physicochemical and pharmacokinetic properties were determined in silico. A total of 175 molecules with docking scores between -10.8 and -9.0 Kcal/mol were obtained. Compound E2 showed the best leishmanicidal activity (IC50 = 4.04 µM) with a value similar to the reference drug pentamidine (IC50 = 2.23 µM). Molecular dynamics analysis predicted low affinity for human TIM. Furthermore, the pharmacokinetic and toxicological properties of the compounds were suitable for developing new leishmanicidal agents.

13.
Mini Rev Med Chem ; 22(4): 586-599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353256

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is one of the most serious and prevalent diseases worldwide. In the last decade, type 2 sodium-glucose cotransporter inhibitors (iSGLT2) were approved as alternative drugs for the pharmacological treatment of T2DM. The anti-hyperglycemic mechanism of action of these drugs involves glycosuria. In addition, SGLT2 inhibitors cause beneficial effects such as weight loss, a decrease in blood pressure, and others. OBJECTIVE: This review aimed to describe the origin of SGLT2 inhibitors and analyze their recent development in preclinical and clinical trials. RESULTS: In 2013, the FDA approved SGLT2 inhibitors as a new alternative for the treatment of T2DM. These drugs have shown good tolerance with few adverse effects in clinical trials. Additionally, new potential anti-T2DM agents based on iSGLT2 (O-, C-, and N-glucosides) have exhibited a favorable profile in preclinical evaluations, making them candidates for advanced clinical trials. CONCLUSION: The clinical results of SGLT2 inhibitors show the importance of this drug class as new anti-T2DM agents with a potential dual effect. Additionally, the preclinical results of SGLT2 inhibitors favor the design and development of more selective new agents. However, several adverse effects could be a potential risk for patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Humanos , Hipoglucemiantes/efectos adversos , Sodio/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA