Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 15(1): 818, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280869

RESUMEN

Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Transcriptoma , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Carcinogénesis/patología , Células Acinares/metabolismo , Perfilación de la Expresión Génica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
2.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781601

RESUMEN

Increasing evidences have linked the hippo pathway with the fibroinflammatory diseases. We generated a series of genetic knockout mice for targeting the key components of Hippo pathway to examine the individual effects of YAP1 and TAZ on pancreatic inflammation and evaluated the therapeutic potential of the YAP1/TAZ inhibitor VT-104. Mice with acinar-specific knockout of YAP1/TAZ did not exhibit any histological abnormalities in the pancreas. LATS1/2 deficiency induced acinar-to-ductal metaplasia, immune cell infiltration and fibroblast activation, which were rescued by the homozygous knockout YAP1, but not TAZ. Additionally, treatment with VT-104 also decreased pathological alterations induced by deletions of LATS1 and LATS2 in acinar cells. Our findings highlight the critical role of YAP1 in modulating pancreatic inflammation and demonstrate that VT-104 holds therapeutic potential to mitigate pancreatitis-associated pathological manifestations. Further exploration is necessary to unravel the underlying mechanisms and translate these insights into clinical applications.

3.
Mol Cancer Res ; 20(1): 62-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610962

RESUMEN

Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Represoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Mutación , Receptores Androgénicos/metabolismo
4.
Hum Mol Genet ; 18(9): 1578-89, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19208652

RESUMEN

Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.


Asunto(s)
Apoptosis , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Neoplasias/genética , Neoplasias/fisiopatología
5.
J Biol Chem ; 284(40): 27416-24, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19651785

RESUMEN

TDP-43 is a nuclear protein involved in exon skipping and alternative splicing. Recently, TDP-43 has been identified as the pathological signature protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis. In addition, TDP-43-positive inclusions are present in Parkinson disease, dementia with Lewy bodies, and 30% of Alzheimer disease cases. Pathological TDP-43 is redistributed from the nucleus to the cytoplasm, where it accumulates. An approximately 25-kDa C-terminal fragment of TDP-43 accumulates in affected brain regions, suggesting that it may be involved in the disease pathogenesis. Here, we show that overexpression of the 25-kDa C-terminal fragment is sufficient to cause the mislocalization and cytoplasmic accumulation of endogenous full-length TDP-43 in two different cell lines, thus recapitulating a key biochemical characteristic of TDP-43 proteinopathies. We also found that TDP-43 mislocalization is associated with a reduction in the low molecular mass neurofilament mRNA levels. Notably, we show that the autophagic system plays a role in TDP-43 metabolism. Specifically, we found that autophagy inhibition increases the accumulation of the C-terminal fragments of TDP-43, whereas inhibition of mTOR, a key protein kinase involved in autophagy regulation, reduces the 25-kDa C-terminal fragment accumulation and restores TDP-43 localization. Our results suggest that autophagy induction may be a valid therapeutic target for TDP-43 proteinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Neurofilamentos/química , Sirolimus/farmacología , Secuencia de Aminoácidos , Animales , Autofagia , Línea Celular Tumoral , Citoplasma/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Peso Molecular , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sirolimus/administración & dosificación
6.
J Genet Genomics ; 36(3): 125-31, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19302968

RESUMEN

Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.


Asunto(s)
ADN Mitocondrial/genética , Dosificación de Gen , Mamíferos/genética , Mitocondrias/genética , Animales , Replicación del ADN , ADN Mitocondrial/metabolismo , Humanos , Mamíferos/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA