Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 632(8024): 383-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048823

RESUMEN

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Neuronas , Replicación Viral , Animales , Neuronas/virología , Neuronas/metabolismo , Ratones , Humanos , Herpesvirus Humano 1/fisiología , Herpes Simple/virología , Herpes Simple/metabolismo , Femenino , Encéfalo/virología , Encéfalo/metabolismo , Masculino , Internalización del Virus , Factores de Restricción Antivirales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Carga Viral , Especificidad del Huésped , Sistemas CRISPR-Cas/genética , Muerte Celular
2.
Development ; 142(11): 1918-36, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26015536

RESUMEN

Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.


Asunto(s)
Neuronas Dopaminérgicas/citología , Mesencéfalo/citología , Neurogénesis , Animales , Tipificación del Cuerpo/genética , Neuronas Dopaminérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Biológicos , Neurogénesis/genética
3.
Stem Cells ; 33(6): 1759-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25753817

RESUMEN

The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3ß and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.


Asunto(s)
Linaje de la Célula , Sistema Nervioso Central/citología , Cresta Neural/citología , Células-Madre Neurales/citología , Tubo Neural/citología , Sistema Nervioso Periférico/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Mesodermo/citología , Ratones Endogámicos C57BL , Placa Neural/citología , Células Neuroepiteliales/citología , Ratas Sprague-Dawley
4.
Cell Rep ; 43(2): 113792, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363679

RESUMEN

Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.


Asunto(s)
Encefalitis , Herpes Simple , Humanos , Animales , Ratones , Inflamación , Neuronas , Hipoxia , Antivirales/farmacología
5.
Stem Cells ; 30(11): 2400-11, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22911885

RESUMEN

The floor plate is one of the major organizers of the developing nervous system through its secretion of sonic hedgehog (Shh). Although the floor plate is located within the neural tube, the derivation of the floor plate during development is still debatable and some studies suggest that floor plate cells are specified by Shh in a temporarily restricted window different to neuroepithelial cells. Using human embryonic stem cells (hESC) as a model of neurogenesis, we sought to determine how floor plate cells may be temporarily specified by SHH signaling during human embryogenesis. We found that inhibition of both GSK3ß and activin/nodal pathways in hESC induces a cellular state of SOX2+/PAX6- expression, we describe as "pre-neuroepithelial." Exposure of SHH during this pre-neuroepithelial period causes the expression of GLI transcription factors to function as activators and consequently upregulate expression of the floor plate marker, FOXA2, while also supressing PAX6 expression to inhibit neuroepithelial fate. FOXA2+ cells were able to efficiently generate mesencephalic dopaminergic neurons, a floor plate derivative. Overall, this study demonstrates a highly efficient system for generating floor plate cells from hESC and, most importantly, reveals that specification of floor plate cells is temporally dependent, whereby it occurs prior to the onset of PAX6 expression, within a pre-neuroepithelial stage.


Asunto(s)
Activinas/antagonistas & inhibidores , Células Madre Embrionarias/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Tubo Neural/citología , Proteína Nodal/antagonistas & inhibidores , Activinas/metabolismo , Activinas/fisiología , Antígenos de Diferenciación/metabolismo , Benzamidas/farmacología , Tipificación del Cuerpo , Linaje de la Célula , Células Cultivadas , Ciclohexilaminas/farmacología , Dioxoles/farmacología , Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/fisiología , Proteínas del Ojo/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Proteínas Hedgehog/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/fisiología , Neurogénesis , Proteína Nodal/metabolismo , Proteína Nodal/fisiología , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Receptor Smoothened , Tiofenos/farmacología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
6.
Adv Exp Med Biol ; 786: 129-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696355

RESUMEN

With the discovery two decades ago that the adult brain contains neural stem cells (NSCs) capable of producing new neurons, a great deal of research has been undertaken to manipulate these cells to repair the damaged nervous system. Much progress has been made in understanding what regulates adult neural stem cell specification, proliferation and differentiation but much remains to be determined. Lessons can be learned from understanding how embryonic neural stem cells produce the exquisitely complicated organ that is the adult mammalian nervous system. This review will highlight the role of transcriptional regulation of mammalian neural stem cells during embryonic development and compare these to the adult neural stem cell/neural precursor cell (NPC) niches of the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Normal physiological NSC/NPC regulation will be explored, as well as their regulation and responses following neural injury and disease. Finally, transcriptional regulation of the endogenous NSC/NPCs will be compared and contrasted with embryonic stem/induced pluripotent stem (ES/iPS) cell-derived NSC/NPCs. Recapitulation of the embryonic sequence of transcriptional events in neural stem cell development into specific neuronal or glial lineages improves directed differentiation of ES/iPS cells and may be useful for activation and specification of endogenous adult neural stem cells for therapeutic purposes.


Asunto(s)
Giro Dentado/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , Proliferación Celular , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
STAR Protoc ; 4(3): 102451, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481727

RESUMEN

Here, we present a protocol for generating miniaturized controlled midbrain organoids (MiCOs) of reproducible size and cellular composition, without a necrotic center. We describe steps for maintaining and passaging human pluripotent stem cells, generating MiCOs using AggreWell™400, and maintaining them in an EB-Disk360on an orbital shaker, eliminating the need for Matrigel or a spinner flask and preventing organoid fusion. We then detail organoid collection for different endpoint analysis. This protocol is suitable for compound screening and disease modeling studies.


Asunto(s)
Mesencéfalo , Células Madre Pluripotentes , Humanos , Células Cultivadas , Organoides
8.
J Med Radiat Sci ; 70(4): 498-508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37315100

RESUMEN

Magnetic resonance imaging (MRI) is being integrated into routine radiation therapy (RT) planning workflows. To reap the benefits of this imaging modality, patient positioning, image acquisition parameters and a quality assurance programme must be considered for accurate use. This paper will report on the implementation of a retrofit MRI Simulator for RT planning, demonstrating an economical, resource efficient solution to improve the accuracy of MRI in this setting.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Radioterapia Guiada por Imagen/métodos
9.
Mol Neurobiol ; 60(6): 3239-3260, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36840844

RESUMEN

Circular RNAs (circRNAs) are key regulators of cellular processes, are abundant in the nervous system, and have putative regulatory roles during neural differentiation. However, the knowledge about circRNA functions in brain development is limited. Here, using RNA-sequencing, we show that circRNA levels increased substantially over the course of differentiation of human embryonic stem cells into rostral and caudal neural progenitor cells (NPCs), including three of the most abundant circRNAs, ciRS-7, circRMST, and circFAT3. Knockdown of circFAT3 during early neural differentiation resulted in minor transcriptional alterations in bulk RNA analysis. However, single-cell transcriptomics of 30 and 90 days differentiated cerebral organoids deficient in circFAT3 showed a loss of telencephalic radial glial cells and mature cortical neurons, respectively. Furthermore, non-telencephalic NPCs in cerebral organoids showed changes in the expression of genes involved in neural differentiation and migration, including FAT4, ERBB4, UNC5C, and DCC. In vivo depletion of circFat3 in mouse prefrontal cortex using in utero electroporation led to alterations in the positioning of the electroporated cells within the neocortex. Overall, these findings suggest a conserved role for circFAT3 in neural development involving the formation of anterior cell types, neuronal differentiation, or migration.


Asunto(s)
Neocórtex , Células-Madre Neurales , Ratones , Animales , Humanos , ARN Circular/genética , Diferenciación Celular/genética , Neurogénesis/genética , Factor de Crecimiento Epidérmico , Cadherinas
10.
Nat Commun ; 14(1): 7871, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052784

RESUMEN

Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Pluripotentes , Humanos , Ratas , Animales , Neuronas Dopaminérgicas/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/fisiología , Mesencéfalo , Células Madre Pluripotentes/metabolismo
11.
J Neurochem ; 122(6): 1167-80, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22784206

RESUMEN

Multiple extracellular factors have been implicated in orchestrating myelination of the CNS; however, less is known about the intracellular signaling cascades that regulate this process. We have previously shown that brain-derived neurotrophic factor (BDNF) promotes oligodendrocyte myelination. Here, we screened for the activation of candidate signaling pathways in in vitro myelination assays and found that extracellular signal-regulated kinase (Erk) signaling positively correlated with basal levels of oligodendrocyte myelination as well as BDNF-induced myelination in vitro. By selectively manipulating Erk1/2 activation in oligodendrocytes in vitro, we found that constitutive activation of Erk1/2 significantly increased myelination, mimicking the promyelinating effect of BDNF, and also caused myelination to occur earlier. Conversely, selective inhibition of Erk1/2 in oligodendrocytes significantly reduced the basal level of myelination and blocked the promyelinating effect of BDNF. Analysis of myelinating spinal cord and corpus callosum white matter tracts revealed that the majority of mature oligodendrocytes are co-labeled with phospho-Erk1/2, whereas phospho-Erk1/2 was rarely observed in oligodendrocyte progenitor cells. Finally, the total level of phospho-Erk1/2 correlated with myelin formation during the early postnatal period. Collectively, these data identify that Erk1/2 signaling within oligodendrocytes exerts an important and direct effect to promote myelination.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/citología , Oligodendroglía/enzimología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/fisiología , Comunicación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Oligodendroglía/fisiología , Ratas , Ratas Sprague-Dawley
12.
Biochem Biophys Res Commun ; 422(1): 75-9, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22560904

RESUMEN

Pluripotent stem cells are a potential source of autologous cells for cell and tissue regenerative therapies. They have the ability to renew indefinitely while retaining the capacity to differentiate into all cell types in the body. With developments in cell therapy and tissue engineering these cells may provide an option for treating tissue loss in organs which do not repair themselves. Limitations to clinical translation of pluripotent stem cells include poor cell survival and low cell engraftment in vivo and the risk of teratoma formation when the cells do survive through implantation. In this study, implantation of human induced-pluripotent stem (hiPS) cells, suspended in Matrigel, into an in vivo vascularized tissue engineering chamber in nude rats resulted in substantial engraftment of the cells into the highly vascularized rat tissues formed within the chamber. Differentiation of cells in the chamber environment was shown by teratoma formation, with all three germ lineages evident within 4 weeks. The rate of teratoma formation was higher with partially differentiated hiPS cells (as embryoid bodies) compared to undifferentiated hiPS cells (100% versus 60%). In conclusion, the in vivo vascularized tissue engineering chamber supports the survival through implantation of human iPS cells and their differentiated progeny, as well as a novel platform for rapid teratoma assay screening for pluripotency.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Ingeniería de Tejidos/métodos , Animales , Linaje de la Célula , Supervivencia Celular , Colágeno/química , Combinación de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/citología , Laminina/química , Proteoglicanos/química , Ratas , Teratoma
13.
Front Cell Dev Biol ; 10: 976549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046338

RESUMEN

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

14.
Stem Cells ; 28(10): 1805-15, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20799336

RESUMEN

Generation of mesencephalic dopamine (mesDA) neurons from human embryonic stem cells (hESCs) requires several stages of signaling from various extrinsic and intrinsic factors. To date, most methods incorporate exogenous treatment of Sonic hedgehog (SHH) to derive mesDA neurons. However, we and others have shown that this approach is inefficient for generating FOXA2+ cells, the precursors of mesDA neurons. As mesDA neurons are derived from the ventral floor plate (FP) regions of the embryonic neural tube, we sought to develop a system to derive FP cells from hESC. We show that forced expression of the transcription factor GLI1 in hESC at the earliest stage of neural induction, resulted in their commitment to FP lineage. The GLI1+ cells coexpressed FP markers, FOXA2 and Corin, and displayed exocrine SHH activity by ventrally patterning the surrounding neural progenitors. This system results in 63% FOXA2+ cells at the neural progenitor stage of hESC differentiation. The GLI1-transduced cells were also able to differentiate to neurons expressing tyrosine hydroxylase. This study demonstrates that GLI1 is a determinant of FP specification in hESC and describes a highly robust and efficient in vitro model system that mimics the ventral neural tube organizer.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Tubo Neural/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Dopamina/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Citometría de Flujo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Tubo Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1
15.
Methods Mol Biol ; 2239: 135-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226617

RESUMEN

Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.


Asunto(s)
Reprogramación Celular/genética , Medios de Cultivo/química , Células Madre Pluripotentes Inducidas/citología , Plásmidos/metabolismo , Factores de Transcripción/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Electroporación/métodos , Células Nutrientes , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Plásmidos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Vitronectina
16.
Mol Neurobiol ; 58(5): 2075-2087, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33415685

RESUMEN

Neurons produced by reprogramming of other cell types are used to study cellular mechanisms of age-related neurodegenerative diseases. To model Alzheimer's disease and other tauopathies, it is essential that alternative splicing of the MAPT transcript in these neurons produces the relevant tau isoforms. Human neurons derived from induced pluripotent stem cells, however, express tau isoform compositions characteristic of foetal neurons rather than of adult neurons unless cultured in vitro for extended time periods. In this study, we characterised the dynamics of the MAPT and APP alternative splicing during a developmental time-course of porcine and murine cerebral cortices. We found age-dependent and species-specific isoform composition of MAPT, including 3R and 4R isoforms in the porcine adult brain similar to that of the adult human brain. We converted adult and embryonic fibroblasts directly into induced neurons and found similar developmental patterns of isoform composition, notably, the 3R and 4R isoforms relevant to the pathogenesis of Alzheimer's disease. Also, we observed cell-type-specific isoform expression of APP transcripts during the conversion. The approach was further used to generate induced neurons from transgenic pigs carrying Alzheimer's disease-causing mutations. We show that such neurons authentically model the first crucial steps in AD pathogenesis.


Asunto(s)
Envejecimiento/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Empalme Alternativo , Animales , Animales Modificados Genéticamente , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Porcinos
17.
Curr Protoc Mol Biol ; 133(1): e125, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32986282

RESUMEN

The lentivirus system enables efficient genetic modification of both dividing and non-dividing cells and therefore is a useful tool for elucidating developmental processes and disease pathogenesis. The development of third-generation lentiviruses has resulted in improved biosafety, low immunogenicity, and substantial packaging capabilities. However, because third-generation lentiviruses require successful co-transfection with four plasmids, this typically means that lower titers are attained. This is problematic, as it is often desirable to produce purified lentiviruses with high titers (>1 × 108 TU/ml), especially for in vivo applications. The manufacturing process for lentiviruses involves several critical experimental factors that can influence titer, purity, and transduction efficiency. Here, we describe a straightforward, stepwise protocol for the reproducible manufacture of high-titer third-generation lentiviruses (1 × 108 to 1 × 109 TU/ml). This optimized protocol enhances transgene expression by use of Lipofectamine transfection and optimized serum replacement medium, a single ultracentrifugation step, use of a sucrose cushion, and addition of a histone deacetylation inhibitor. Furthermore, we provide alternate methods for titration analyses, including functional and genomic integration analyses, using common laboratory techniques such as FACS as well as genomic DNA extraction and qPCR. These optimized methods will be beneficial for investigating developmental processes and disease pathogenesis in vitro and in vivo. © 2020 The Authors. Basic Protocol 1: Lentivirus production Support Protocol: Lentivirus concentration Basic Protocol 2: Lentivirus titration Alternate Protocol 1: Determination of viral titration by FACS analysis Alternate Protocol 2: Determination of viral titration by genome integration analysis.


Asunto(s)
Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Transgenes , Animales , Técnicas de Cultivo de Célula , Línea Celular , Citometría de Flujo , Expresión Génica , Vectores Genéticos/biosíntesis , Vectores Genéticos/aislamiento & purificación , Células HEK293 , Humanos , Plásmidos , Transducción Genética , Transfección
18.
Stem Cell Res ; 48: 101984, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32971463

RESUMEN

Direct neuronal conversion describes the process of generating induced neurons from somatic cells such as fibroblasts by overexpressing cell type-specific transcription factors, microRNAs or by culturing in the presence of small molecules. This was first achieved by expressing Brn2, Ascl1 and Myt1L in mouse fibroblasts, and was later achieved in human cells by the inclusion of additional factors such as NeuroD1. Here, we present the first protocol for directly converting porcine fibroblasts into induced neurons. We used lentivirus-mediated delivery of previously identified neuron-specifying transcription factors and microRNAs and evaluated morphology and neuron marker expression after ten days of conversion. We found that Ascl1 and microRNAs, miR-9/9* and miR-124 together generated more neuronal cells than other conditions tested. The porcine induced neurons expressed common mature markers such as MAP2 and Synaptophysin after four weeks of conversion. Transcriptomic analysis revealed that fibroblast-specific signatures were silenced early in the conversion process, while the neuron-specific genes became more abundant during conversion. We generated a heterogeneous population of glutamatergic and GABAergic neurons.


Asunto(s)
Reprogramación Celular , MicroARNs , Animales , Fibroblastos , MicroARNs/genética , Neuronas , Porcinos , Factores de Transcripción/genética
19.
Stem Cell Res ; 45: 101781, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32305865

RESUMEN

We generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a clinically diagnosed 70 year old female Parkinson's disease (PD) patient heterozygous for a pathogenic missense variant (p.G2019S; c. 6055 G > A) in the leucine-rich repeat kinase 2 (LRRK2) gene by using non-integrating Sendai viruses. The DANi-011A iPSC line has a normal karyotype and is free from Sendai viruses. The expression of pluripotent markers in the iPSC line was confirmed by immunofluorescent staining, and we confirmed its ability to differentiate into the three germ layers. The DANi-011A iPSC line can be used for modeling PD and as a drug-screening platform.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Anciano , Línea Celular , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética
20.
Stem Cell Res ; 42: 101657, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786474

RESUMEN

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients with different familial mutations using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Parkinson/genética , Adulto , Línea Celular , Humanos , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA