Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(43): 16641-16652, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734047

RESUMEN

High-performance zeolite-supported noble metal catalysts with low loading and high dispersion of active components are the most promising materials for achieving the complete oxidation of formaldehyde (HCHO) at room temperature. In this work, palladium nanoparticles (Pd NPs) with different sizes were successfully encapsulated inside the silicalite-1 (S-1) zeolite framework by using diverse stabling ligands via the one-pot method. Thereafter, the rule on selecting the coordinative ligands for palladium was clarified: more N atoms, a short carbon chain, a smaller branch chain, and bidentate coordination are characteristics of an ideal ligand. Accordingly, the best-performing 0.2Pd@S-1(Ethylenediamine) catalyst exhibited outstanding performance for HCHO oxidation, achieving 100% conversion even at room temperature. High-resolution high-angle annular dark-field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) calculations indicate that the chelate is formed by complexation of Pd2+ ions with ethylenediamine, displaying the smallest spatial site resistance simultaneously with the zeolite synthesis, resulting in Pd located mostly within the 5-membered ring (5-MR) channels of S-1 after calcination, thus limiting the growth of Pd clusters and promoting their dispersion.


Asunto(s)
Nanopartículas del Metal , Zeolitas , Paladio , Temperatura , Ligandos , Formaldehído , Etilenodiaminas
2.
J Environ Sci (China) ; 125: 135-147, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375899

RESUMEN

Pt catalysts with nitrogen-doped graphene oxide (GO) as support and CeO2 as promoter were prepared by impregnation method, and their catalytic oxidation of formaldehyde (HCHO) at room temperature was tested. The Pt-CeO2/N-rGO (reduced GO) with a mass fraction of 0.7% Pt and 0.8% CeO2 exhibited an excellent catalytic performance with the 100% conversion of HCHO at room temperature. Physicochemical characterization demonstrated that nitrogen-doping greatly increased the defect degree and the specific surface area of GO, enhanced the dispersion of Pt and promoted more zero-valent Pt. The synergistic effect between CeO2 and Pt was also beneficial to the dispersion of Pt. Nitrogen-doping promoted the production of more Ce3+ ions, generating more oxygen vacancies, which was conducive to O2 adsorption. As a result, the catalyst exhibited enhanced redox properties, leading to the best catalytic activity. Finally, an attempt to propose the reaction mechanism of HCHO oxidation has been made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA