Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Front Physiol ; 12: 750535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087413

RESUMEN

Much has been reported about optogenetic based cardiac arrhythmia treatment and the corresponding characterization of photostimulation parameters, but still, our capacity to interact with the underlying spatiotemporal excitation patterns relies mainly on electrical and/or pharmacological approaches. However, these well-established treatments have always been an object of somehow heated discussions. Though being acutely life-saving, they often come with potential side-effects leading to a decreased functionality of the complex cardiac system. Recent optogenetic studies showed the feasibility of the usage of photostimulation as a defibrillation method with comparatively high success rates. Although, these studies mainly concentrated on the description as well as on the comparison of single photodefibrillation approaches, such as locally focused light application and global illumination, less effort was spent on the description of excitation patterns during actual photostimulation. In this study, the authors implemented a multi-site photodefibrillation technique in combination with Multi-Lead electrocardiograms (ECGs). The technical connection of real-time heart rhythm measurements and the arrhythmia counteracting light control provides a further step toward automated arrhythmia classification, which can lead to adaptive photodefibrillation methods. In order to show the power effectiveness of the new approach, transgenic murine hearts expressing channelrhodopsin-2 ex vivo were investigated using circumferential micro-LED and ECG arrays. Thus, combining the best of two methods by giving the possibility to illuminate either locally or globally with differing pulse parameters. The optical technique presented here addresses a number of challenges of technical cardiac optogenetics and is discussed in the context of arrhythmic development during photostimulation.

2.
J Vis Exp ; (174)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34515679

RESUMEN

Ventricular tachyarrhythmias are a major cause of mortality and morbidity worldwide. Electrical defibrillation using high-energy electric shocks is currently the only treatment for life-threatening ventricular fibrillation. However, defibrillation may have side-effects, including intolerable pain, tissue damage, and worsening of prognosis, indicating a significant medical need for the development of more gentle cardiac rhythm management strategies. Besides energy-reducing electrical approaches, cardiac optogenetics was introduced as a powerful tool to influence cardiac activity using light-sensitive membrane ion channels and light pulses. In the present study, a robust and valid method for successful photostimulation of Langendorff perfused intact murine hearts will be described based on multi-site pacing applying a 3 x 3 array of micro light-emitting diodes (micro-LED). Simultaneous optical mapping of epicardial membrane voltage waves allows the investigation of the effects of region-specific stimulation and evaluates the newly induced cardiac activity directly on-site. The obtained results show that the efficacy of defibrillation is strongly dependent on the parameters chosen for photostimulation during a cardiac arrhythmia. It will be demonstrated that the illuminated area of the heart plays a crucial role for termination success as well as how the targeted control of cardiac activity during illumination for modifying arrhythmia patterns can be achieved. In summary, this technique provides a possibility to optimize the on-site mechanism manipulation on the way to real-time feedback control of cardiac rhythm and, regarding the region specificity, new approaches in reducing the potential harm to the cardiac system compared to the usage of non-specific electrical shock applications.


Asunto(s)
Optogenética , Taquicardia Ventricular , Animales , Arritmias Cardíacas , Corazón , Ratones , Fibrilación Ventricular
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4832-4835, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441427

RESUMEN

One major cause of death in the industrialized world is sudden cardiac death, which so far can be reliably treated only by applying strong electrical shocks. Developing improved methods, aiming at lowering shock intensity and associated side effects potentially has significant clinical implications. Thus, optogenetic stimulation using structured illumination has been introduced as a promising experimental tool to investigate mechanisms underlying multi-site pacing and to optimize potential low-energy approaches. Furthermore, an objective of this work is to strengthen the application of optogenetic tools for cardiac arrhythmia research, which in turn is expected to improve applicable technologies towards tissue-protective defibrillation.


Asunto(s)
Cardioversión Eléctrica , Fibrilación Ventricular , Humanos , Optogenética
4.
Front Physiol ; 9: 1651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542292

RESUMEN

Complex spatiotemporal non-linearity as observed during cardiac arrhythmia strongly correlates with vortex-like excitation wavelengths and tissue characteristics. Therefore, the control of arrhythmic patterns requires fundamental understanding of dependencies between onset and perpetuation of arrhythmia and substrate instabilities. Available treatments, such as drug application or high-energy electrical shocks, are discussed for potential side effects resulting in prognosis worsening due to the lack of specificity and spatiotemporal precision. In contrast, cardiac optogenetics relies on light sensitive ion channels stimulated to trigger excitation of cardiomyocytes solely making use of the inner cell mechanisms. This enables low-energy, non-damaging optical control of cardiac excitation with high resolution. Recently, the capability of optogenetic cardioversion was shown in Channelrhodopsin-2 (ChR2) transgenic mice. But these studies used mainly structured and local illumination for cardiac stimulation. In addition, since optogenetic and electrical stimulus work on different principles to control the electrical activity of cardiac tissue, a better understanding of the phenomena behind optogenetic cardioversion is still needed. The present study aims to investigate global illumination with regard to parameter characterization and its potential for cardioversion. Our results show that by tuning the light intensity without exceeding 1.10 mW mm-2, a single pulse in the range of 10-1,000 ms is sufficient to reliably reset the heart into sinus rhythm. The combination of our panoramic low-intensity photostimulation with optical mapping techniques visualized wave collision resulting in annihilation as well as propagation perturbations as mechanisms leading to optogenetic cardioversion, which seem to base on other processes than electrical defibrillation. This study contributes to the understanding of the roles played by epicardial illumination, pulse duration and light intensity in optogenetic cardioversion, which are the main variables influencing cardiac optogenetic control, highlighting the advantages and insights of global stimulation. Therefore, the presented results can be modules in the design of novel illumination technologies with specific energy requirements on the way toward tissue-protective defibrillation techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA