Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542848

RESUMEN

Vanadium complexes have gained considerable attention as biologically active compounds. In this contribution, three previously reported dioxovanadium(V) complexes with pyridoxal semicarbazone, thiosemicarbazone, and S-methyl-iso-thiosemicarbazone ligands are theoretically examined. The intermolecular stabilization interactions within crystallographic structures were investigated by Hirshfeld surface analysis. These experimental structures were optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(V) level of theory, and crystallographic and optimized bond lengths and angles were compared. High correlation coefficients and low mean absolute errors between these two data sets proved that the selected level of theory was appropriate for the description of the system. The changes in structures and stability were examined by adding explicit solvent molecules. The Quantum Theory of Atoms in Molecules (QTAIM) was employed to analyze the intramolecular interactions with special emphasis on the effect of substituents. A good correlation between electron density/Laplacian and interatomic distance was found. Through molecular docking simulations towards Bovine Serum Albumin (BSA), the binding affinity of complexes was further investigated. The spontaneity of binding in the active position of BSA was shown. Further experimental studies on this class of compounds are advised.

2.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834192

RESUMEN

Pyridoxylidene-aminoguanidine (PLAG) and its transition metal complexes are biologically active compounds with interesting properties. In this contribution, three new metal-PLAG complexes, Zn(PLAG)(SO4)(H2O)].∙H2O (Zn-PLAG), [Co(PLAG)2]SO4∙2H2O (Co-PLAG), and [Fe(PLAG)2]SO4∙2H2O) (Fe-PLAG), were synthetized and characterized by the X-ray crystallography. The intermolecular interactions governing the stability of crystal structure were compared to those of Cu(PLAG)(NCS)2 (Cu-PLAG) within Hirshfeld surface analysis. The structures were optimized at B3LYP/6-31+G(d,p)(H,C,N,O,S)/LanL2DZ (Fe,Co,Zn,Cu), and stability was assessed through Natural Bond Orbital Theory and Quantum Theory of Atoms in Molecules. Special emphasis was put on investigating the ligand's stability and reactivity. The binding of these compounds to Bovine and Human serum albumin was investigated by spectrofluorometric titration. The importance of complex geometry and various ligands for protein binding was shown. These results were complemented by the molecular docking study to elucidate the most important interactions. The thermodynamic parameters of the binding process were determined. The binding to DNA, as one of the main pathways in the cell death cycle, was analyzed by molecular docking. The cytotoxicity was determined towards HCT116, A375, MCF-7, and A2780 cell lines. The most active compound was Cu-PLAG due to the presence of PLAG and two thiocyanate ligands.


Asunto(s)
Complejos de Coordinación , Neoplasias Ováricas , Femenino , Animales , Bovinos , Humanos , Unión Proteica , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Metales , ADN/química , Complejos de Coordinación/química , Zinc/química , Ligandos , Cobre/química
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569285

RESUMEN

Thiosemicarbazones and their transition metal complexes are biologically active compounds and anticancer agents with versatile structural properties. In this contribution, the structural features and stability of four pyridoxal-thiosemicarbazone (PLTSC) complexes with Fe, Co, Ni, and Cu were investigated using the density functional theory and natural bond orbital approach. Special emphasis was placed on the analysis of the donor atom-metal interactions. The geometry of compounds and crystallographic structures were further examined by Hirshfeld surface analysis, and the main intermolecular interactions were outlined. It has been shown that the geometry and the number of PLTSC units in the structure determine the type and contribution of the specific interactions. The binding of all four complexes to bovine and human serum albumin was investigated through spectrofluorometric titration. The dependency of the thermodynamic parameters on the present metal ion and geometry was explained by the possible interactions through molecular docking simulations. The binding of complexes to DNA, as one of the possible ways the compounds could induce cell death, was examined by molecular docking. The cytotoxicity was measured towards HCT116, A375, MCF-7, A2780, and MCF5 cell lines, with Cu-PLTSC being the most active, as it had the highest affinity towards DNA and proteins.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Ováricas , Tiosemicarbazonas , Femenino , Animales , Bovinos , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Unión Proteica , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Metales , ADN/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Piridoxal/farmacología , Cobre/química
4.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511579

RESUMEN

Coumarin derivatives are a class of compounds with pronounced biological activities that depend primarily on the present substituents. Four 3-methoxycarbonylcoumarin derivatives with substituents of different electron-donating/electron-withdrawing abilities (Br, NO2, OH, and OMe) were investigated structurally by NMR, IR, and UV-VIS spectroscopies and density functional theory methods. The appropriate level of theory (B3LYP-D3BJ/6-311++G(d,p) was selected after comparing similar compounds' experimental and theoretical structural parameters. The natural bond orbital and quantum theory of atoms in molecules were employed to investigate the intramolecular interactions governing stability. The electronic effects of substituents mostly affected the aromatic ring that the substituents are directly attached to. The antioxidant properties were investigated by electron paramagnetic resonance spectroscopy towards HO•, and the percentages of reduction were between 13% (6-Br) and 23% (6-OMe). The protein binding properties towards transport proteins were assessed by spectrofluorimetry, molecular docking, and molecular dynamics (MD). The experimentally determined binding energies were well reproduced by molecular docking, showing that the spontaneity of ibuprofen binding was comparable to the investigated compounds. The flexibility of HSA in MD simulations depended on the substituents. These results proved the importance of electronic effects for the protein binding affinities and antioxidant properties of coumarin derivatives.


Asunto(s)
Antioxidantes , Electrónica , Modelos Moleculares , Antioxidantes/farmacología , Unión Proteica , Simulación del Acoplamiento Molecular , Espectroscopía de Resonancia Magnética
5.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055194

RESUMEN

In this contribution, four new compounds synthesized from 4-hydroxycoumarin and tyramine/octopamine/norepinephrine/3-methoxytyramine are characterized spectroscopically (IR and NMR), chromatographically (UHPLC-DAD), and structurally at the B3LYP/6-311++G*(d,p) level of theory. The crystal structure of the 4-hydroxycoumarin-octopamine derivative was solved and used as a starting geometry for structural optimization. Along with the previously obtained 4-hydroxycoumarin-dopamine derivative, the intramolecular interactions governing the stability of these compounds were quantified by NBO and QTAIM analyses. Condensed Fukui functions and the HOMO-LUMO gap were calculated and correlated with the number and position of OH groups in the structures. In vitro cytotoxicity experiments were performed to elucidate the possible antitumor activity of the tested substances. For this purpose, four cell lines were selected, namely human colon cancer (HCT-116), human adenocarcinoma (HeLa), human breast cancer (MDA-MB-231), and healthy human lung fibroblast (MRC-5) lines. A significant selectivity towards colorectal carcinoma cells was observed. Molecular docking and molecular dynamics studies with carbonic anhydrase, a prognostic factor in several cancers, complemented the experimental results. The calculated MD binding energies coincided well with the experimental activity, and indicated 4-hydroxycoumarin-dopamine and 4-hydroxycoumarin-3-methoxytyramine as the most active compounds. The ecotoxicology assessment proved that the obtained compounds have a low impact on the daphnia, fish, and green algae population.


Asunto(s)
4-Hidroxicumarinas/síntesis química , Antineoplásicos/síntesis química , Anhidrasas Carbónicas/metabolismo , Neoplasias/enzimología , Neurotransmisores/química , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Anhidrasas Carbónicas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico , Octopamina/química , Difracción de Rayos X
6.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614131

RESUMEN

Ruthenium(II)-arene complexes have gained significant research interest due to their possible application in cancer therapy. In this contribution two new complexes are described, namely [{RuCl(η6-p-cymene)}2(µ-Cl)(µ-1-N,N'-naphthyl)]X (X = Cl, 1; PF6, 2), which were fully characterized by IR, NMR, and elemental microanalysis. Furthermore, the structure of 2 in the solid state was determined by a single crystal X-ray crystallographic study, confirming the composition of the crystals as 2·2MeOH. The Hirshfeld surface analysis was employed for the investigation of interactions that govern the crystal structure of 2·2MeOH. The structural data for 2 out of 2·2MeOH was used for the theoretical analysis of the cationic part [{RuCl(η6-p-cymene)}2(µ-Cl)(µ-1-N,N'-naphthyl)]+ (2a) which is common to both 1 and 2. The density functional theory, at B3LYP/6-31+G(d,p) basis set for H, C, N, and Cl atoms and LanL2DZ for Ru ions, was used for the optimization of the 2a structure. The natural bond orbital and quantum theory of atoms in molecules analyses were employed to quantify the intramolecular interactions. The reproduction of experimental IR and NMR spectra proved the applicability of the chosen level of theory. The binding of 1 to bovine serum albumin was examined by spectrofluorimetry and molecular docking, with complementary results obtained. Compound 1 acted as a radical scavenger towards DPPH• and HO• radicals, along with high activity towards cancer prostate and colon cell lines.


Asunto(s)
Antineoplásicos , Neoplasias , Rutenio , Humanos , Simulación del Acoplamiento Molecular , Cimenos , Espectroscopía de Resonancia Magnética , Rutenio/farmacología , Rutenio/química , Antineoplásicos/química , Estructura Molecular
7.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956756

RESUMEN

New complex Co(III) with ligand Pyridoxal-S-methyl-isothiosemicarbazone, (PLITSC) was synthesized. X-ray analysis showed the bis-ligand octahedral structure of the cobalt complex [Co(PLITSC-H)2]BrNO3·CH3OH (compound 1). The intermolecular interactions governing the crystal structure were described by the Hirsfeld surface analysis. The structure of compound 1 and the corresponding Zn complex (([Zn(PLTSC)(H2O)2]SO4·H2O)) were optimized at the B3LYP/6-31 + G (d,p)/LanL2DZ level of theory, and the applicability was assessed by comparison with the crystallographic structure. The natural bond orbital analysis was used for the discussion on the stability of formed compounds. The antibacterial activity of obtained complexes towards S. aureus and E. coli was determined, along with the effect of compound 1 on the formation of free radical species. Activity of compound 1 towards the removal of methylene blue was also investigated. The voltammograms of these compounds showed the reduction of metal ions, as well as the catalyzed reduction of CO2 in acidic media.


Asunto(s)
Piridoxal , Staphylococcus aureus , Antibacterianos/farmacología , Cristalografía por Rayos X , Escherichia coli , Ligandos
8.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234859

RESUMEN

New Ni (II) and Cu (II) complexes with pyridoxal-semicarbazone were synthesized and their structures were solved by X-ray crystallography. This analysis showed the bis-ligand octahedral structure of [Ni(PLSC-H)2]·H2O and the dimer octahedral structure of [Cu(PLSC)(SO4)(H2O)]2·2H2O. Hirshfeld surface analysis was employed to determine the most important intermolecular interactions in the crystallographic structures. The structures of both complexes were further examined using density functional theory and natural bond orbital analysis. The photocatalytic decomposition of methylene blue in the presence of both compounds was investigated. Both compounds were active toward E. coli and S. aureus, with a minimum inhibition concentration similar to that of chloramphenicol. The obtained complexes led to the formation of free radical species, as was demonstrated in an experiment with dichlorofluorescein-diacetate. It is postulated that this is the mechanistic pathway of the antibacterial and photocatalytic activities. Cyclic voltammograms of the compounds showed the peaks of the reduction of metal ions. A molecular docking study showed that the Ni(II) complex exhibited promising activity towards Janus kinase (JAK), as a potential therapy for inflammatory diseases, cancers, and immunologic disorders.


Asunto(s)
Complejos de Coordinación , Semicarbazonas , Antibacterianos/farmacología , Cloranfenicol , Complejos de Coordinación/química , Cristalografía por Rayos X , Escherichia coli/metabolismo , Quinasas Janus/metabolismo , Ligandos , Azul de Metileno , Simulación del Acoplamiento Molecular , Estructura Molecular , Piridoxal , Staphylococcus aureus/metabolismo , Níquel , Cobre
9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948070

RESUMEN

Coumarin derivatives have proven beneficial biological activities, but the mechanism of their radical scavenging potency is not fully understood. In this study, the antiradical capacity of two newly synthesized 4,7-dihydroxycoumarin derivatives: (E)-3-(1-((3-hydroxy-4-methoxyphenyl)amino)-ethylidene)-2,4-dioxochroman-7-yl acetate (A-3OH) and (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A-4OH) towards HO• were examined by Electron Paramagnetic Resonance (EPR) Spectroscopy and Density Functional Theory (DFT). The compounds were fully characterized by the elemental microanalysis, IR, and NMR spectroscopies. The effect of pH on the acid-base equilibria is separately discussed and the predominant species at the physiological pH were determined. Several common mechanisms (Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), Sequential Proton Loss followed by Electron Transfer (SPLET), Radical Adduct Formation (RAF), and Intramolecular Hydrogen Atom Abstraction (iHAA)) of radical scavenging were investigated based on thermodynamic and kinetic parameters. EPR results indicated that both compounds significantly reduce the amount of present HO•. The results of the kinetic DFT study demonstrated that both compounds predominantly exhibit antiradical capacity through HAT and SPLET mechanisms. The estimated overall rate constants (koverall) proved that A-4OH shows better antioxidant capacity than A-3OH which is well-correlated with the results obtained by EPR measurement.


Asunto(s)
Cumarinas/síntesis química , Depuradores de Radicales Libres/síntesis química , Cumarinas/química , Cumarinas/farmacología , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Termodinámica
10.
Inorg Chem ; 54(9): 4180-2, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25871630

RESUMEN

C-F bond cleavage by transient phosphorus(III)-based dications [RP(C(PPh3)2)](2+) (4a(2+), R = Ph; 4b(2+), R = 4-F-Ph) is reported. These dications were generated by reaction of the corresponding monocationic precursors with excess Na[BAr4(Cl)]. Evidence for the existence of transient dicationic species was obtained by trapping the dication 4a(2+) with PMe3. According to theoretical analysis, the low-lying lowest unoccupied molecular orbitals of these species were responsible for the observed activation of C-F bonds.

11.
Antioxidants (Basel) ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397741

RESUMEN

As part of this study, the mechanisms of the antioxidant activity of previously synthesized coumarin-trihydrobenzohydrazine derivatives were investigated: (E)-2,4-dioxo-3-(1-(2-(2″,3″,4″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (1) and (E)-2,4-dioxo-3-(1-(2-(3″,4″,5″-trihydroxybenzoyl)hydrazineyl)ethylidene)chroman-7-yl acetate (2). The capacity of the compounds to neutralize HO• was assessed by EPR spectroscopy. The standard mechanisms of antioxidant action, Hydrogen Atom Transfer (HAT), Sequential Proton Loss followed by Electron Transfer (SPLET), Single-Electron Transfer followed by Proton Transfer (SET-PT), and Radical Adduct/Coupling Formation (RAF/RCF) were examined using the QM-ORSA methodology. It was estimated that the newly synthesized compounds, under physiological conditions, exhibited antiradical activity via SPLET and RCF mechanisms. Based on the estimated overall rate constants (koverall), it can be concluded that 2 exhibited a greater antiradical capacity. The obtained values indicated a good correlation with the EPR spectroscopy results. Both compounds exhibit approximately 1.5 times more activity in comparison to the precursor compound used in the synthesis (gallic acid).

12.
Biomolecules ; 14(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38672437

RESUMEN

The (pentamethylcyclopentadienyl)chloridoiridium(III) complex bearing a κP,κS-bonded Ph2PCH2CH2SPh ligand ([Ir(η5-C5Me5)Cl(Ph2P(CH2)2SPh-κP,κS)]PF6, (1)] was synthesized and characterized. Multinuclear (1H, 13C and 31P) NMR spectroscopy was employed for the determination of the structure. Moreover, SC-XRD confirmed the proposed structure belongs to the "piano stool" type. The Hirshfeld surface analysis outlined the most important intermolecular interactions in the structure. The crystallographic structure was optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,P,S,Cl)/LanL2DZ(Ir) level of theory. The applicability of this level was verified through a comparison of experimental and theoretical bond lengths and angles, and 1H and 13C NMR chemical shifts. The Natural Bond Orbital theory was used to identify and quantify the intramolecular stabilization interactions, especially those between donor atoms and Ir(III) ions. Complex 1 was tested on antitumor activity against five human tumor cell lines: MCF-7 breast adenocarcinoma, SW480 colon adenocarcinoma, 518A2 melanoma, 8505C human thyroid carcinoma and A253 submandibular carcinoma. Complex 1 showed superior antitumor activity against cisplatin-resistant MCF-7, SW480 and 8505C cell lines. The mechanism of tumoricidal action on 8505C cells indicates the involvement of caspase-induced apoptosis, accompanied by a considerable reduction in ROS/RNS and proliferation potential of treated cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Iridio , Humanos , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Iridio/química , Iridio/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Modelos Moleculares
13.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543158

RESUMEN

A novel trimethyltin(IV) complex (Me3SnL), derived from 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoate ligand, has been synthesized and characterized by elemental microanalysis, UV/Vis spectrophotometry, FT-IR and multinuclear (1H, 13C and 119Sn) NMR spectroscopies. Furthermore, the structure of the ligand precursor HL was solved using SC-XRD (single-crystal X-ray diffraction). The prediction of UV/Vis and NMR spectra by quantum-chemical methods was performed and compared to experimental findings. The protein binding affinity of Me3SnL towards BSA was determined by spectrofluorometric titration and subsequent molecular docking simulations. Me3SnL has been evaluated for its in vitro anticancer activity against three human cell lines, MCF-7 (breast adenocarcinoma), A375 (melanoma) and HCT116 (colorectal carcinoma), and three mouse tumor cell lines, 4T1 (breast carcinoma), B16 (melanoma) and CT26 (colon carcinoma), using MTT and CV assays. The strong inhibition of A375 cell proliferation, ROS/RNS upregulation and robust lipid peroxidation lead to autophagic cell death upon treatment with Me3SnL.

14.
Antioxidants (Basel) ; 12(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37627480

RESUMEN

Sorghum grain (Sorghum bicolor L. Moench) is a gluten-free cereal with excellent nutritional value and is a good source of antioxidants, including polyphenols, as well as minerals with proven health benefits. Herein, the phenolic composition, elemental profile, and antioxidant activity of sixteen food-grade sorghum grains (S1-S16) grown under agroecological conditions in Serbia were determined. Nine phenolic compounds characteristic of sorghum grains, such as luteolinidin, 5-methoxyluteolinidin, luteolidin derivative, luteolidin glucoside, apigeninidin, 7-methoxyapigeninidin, apigeninidin glucoside, and cyanidin derivative, were quantified. The antioxidant potential of the analyzed sorghum grains was evaluated by UV/Vis (DPPH, ABTS, and FRAP) and Electron Paramagnetic Resonance spectroscopy (hydroxyl and ascorbyl radical scavenging assays). The content of macro- and microelements was determined by Inductively Coupled Plasma Optical Emission spectroscopy. Theoretical daily intakes of selected major and trace elements were assessed and compared with the Recommended Daily Allowance or Adequate Intake. Sample S8 had the highest amount of phenolic compounds, while S4, S6, and S8 exhibited the strongest antioxidative potential. The sorghum studied could completely satisfy the daily needs of macro- (K, Mg, and P) and microelements (Se, Zn, Fe). Pattern recognition techniques confirmed the discrimination of samples based on phenolic profile and elemental analysis and recognized the main markers responsible for differences between the investigated samples. The reaction between hydroxyl radicals and luteolinidin/apigeninidin was investigated by Density Functional Theory and thermodynamically preferred mechanism was determined.

15.
Artículo en Inglés | MEDLINE | ID: mdl-36767412

RESUMEN

Coumarins represent a broad class of compounds with pronounced pharmacological properties and therapeutic potential. The pursuit of the commercialization of these compounds requires the establishment of controlled and highly efficient degradation processes, such as advanced oxidation processes (AOPs). Application of this methodology necessitates a comprehensive understanding of the degradation mechanisms of these compounds. For this reason, possible reaction routes between HO• and recently synthesized aminophenol 4,7-dihydroxycoumarin derivatives, as model systems, were examined using electron paramagnetic resonance (EPR) spectroscopy and a quantum mechanical approach (a QM-ORSA methodology) based on density functional theory (DFT). The EPR results indicated that all compounds had significantly reduced amounts of HO• radicals present in the reaction system under physiological conditions. The kinetic DFT study showed that all investigated compounds reacted with HO• via HAT/PCET and SPLET mechanisms. The estimated overall rate constants (koverall) correlated with the EPR results satisfactorily. Unlike HO• radicals, the newly formed radicals did not show (or showed negligible) activity towards biomolecule models representing biological targets. Inactivation of the formed radical species through the synergistic action of O2/NOx or the subsequent reaction with HO• was thermodynamically favored. The ecotoxicity assessment of the starting compounds and oxidation products, formed in multistage reactions with O2/NOx and HO•, indicated that the formed products showed lower acute and chronic toxicity effects on aquatic organisms than the starting compounds, which is a prerequisite for the application of AOPs procedures in the degradation of compounds.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Oxidación-Reducción , Organismos Acuáticos , Cinética , Contaminantes Químicos del Agua/análisis
16.
Comput Biol Chem ; 95: 107573, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34562727

RESUMEN

In the past few years, there has been a certain interest in nitrogen-centered radicals, biologically important radicals that play a vital role in various processes and constitute many important biological molecules. In this paper, there was an attempt to bridge a gap in the literature that concerns the antiradical potency of monoamine neurotransmitters (dopamine, epinephrine, and norepinephrine) and their metabolites towards these radicals. The most probable radical quenching mechanism was determined for each radical out of three common mechanisms, namely Hydrogen Atom Transfer (HAT), Single Electron Transfer followed by the Proton Transfer (SET-PT), and Sequential Proton Loss Electron Transfer (SPLET). Marcus' theory was then used to determine the reaction rates for the electron transfer process. SPLET was the most probable mechanism for both reactions with the aminyl and hydrazyl radicals, while HAT and SPLET were plausible mechanisms for reactions with the imidazolyl radical. Special emphasis was put on the investigation of the substituent effect on the preferred mechanism. The necessity of both thermodynamic and kinetic parameters for the comparison of the antiradical potency of compounds was discussed. The same methodology was applied for the theoretical investigation of the reactivity towards DPPH⦁, a member of the hydrazyl radicals. An ecotoxicity analysis was performed to assess the impact the investigated radicals have on the ecosystem. Except for histidine, every other neutral form was either toxic or highly toxic to some of the analyzed marine organisms.


Asunto(s)
Antioxidantes/farmacología , Neurotransmisores/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Compuestos de Bifenilo/antagonistas & inhibidores , Biología Computacional , Transporte de Electrón , Cinética , Modelos Moleculares , Estructura Molecular , Neurotransmisores/química , Neurotransmisores/metabolismo , Picratos/antagonistas & inhibidores , Termodinámica
17.
RSC Adv ; 11(5): 2838-2847, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35424215

RESUMEN

The recently declared global pandemic of a new human coronavirus called SARS-CoV-2, which causes respiratory tract disease COVID-19, has reached worldwide resonance and global efforts are being made to look for possible cures. Sophisticated molecular docking software, as well as available protein sequence and structure information, offer the ability to test the inhibition of two important targets of SARS-CoV-2, furin (FUR) enzyme, and spike glycoprotein, or spike protein (SP), that are key to host cell adhesion and hijacking. The potential inhibitory effect and mechanism of action of acid-base forms of different antiviral drugs, dominant at physiological pH, chloroquine (CQ), hydroxychloroquine (HCQ), and cinanserin (CIN), which have been shown to be effective in the treatment of SARS-CoV-2 virus, is reported with the special emphasis on their relative abundances. On the other hand, the potential inhibitory effect of the dominant acid-base forms of quercetin (Q) and its oxidative metabolite 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H) benzofuranone (BZF), which are constituents of traditional food products believed to exhibit antiviral effects, was also examined. The undertaken study includes the determination of the major energy contributions to the binding energy as well as in-depth analysis of amino acid residues at the active pocket and possible interactions. The approach that we propose here may be an additional strategy for combating the deadly virus by preventing the first step of the virus replication cycle. Preliminary research has shown that the investigated compounds exert an inhibitory effect against the SARS-CoV-2 furin enzyme and spiked glycoprotein through different acid-base forms. These investigations may be helpful in creating potential therapeutic agents in the fight against the SARS-CoV-2 virus. On the other hand, the results we predicted in this computational study may be the basis for new experimental in vitro and in vivo studies.

18.
RSC Adv ; 10(58): 35099-35108, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35515669

RESUMEN

The global pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused many fatalities among people and significantly influenced the global economy. Since efficient treatment is not available, the computational methods in biology and chemistry are a promising starting point towards adequate medication. Three previously synthesized coumarin derivatives and their Pd(ii) complexes were examined for the binding affinity towards the Mpro protein of SARS-CoV-2 by molecular docking and compared to two Food and Drug Administration (FDA) drugs, cinanserin and chloroquine. All of the investigated compounds bind to the active position of the mentioned protein. Coumarin-Pd(ii) complexes showed higher binding affinities compared to the approved drugs. The bindings of the bis(3-(1-((3-chlorophenyl)amino)ethylidene)-chroman-2,4-dione) palladium(ii) complex, its corresponding ligand, and cinanserin to SARS-CoV-2 Mpro were further subjected to the molecular dynamics simulations. The binding free energies, computed by MM/PBSA approach were analyzed in detail and the importance of specific interactions outlined. These results showed that the molecules bearing structural similarity to the approved drugs and their complexes have the potential to inhibit the functional activity of SARS-CoV-2 protease and further experimental studies should be undertaken.

19.
Comput Biol Chem ; 84: 107170, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31810852

RESUMEN

Octopamine is a neurotransmitter in invertebrates and a phenol analog of norepinephrine. The crystallographic and spectral (UV-visUV, and NMR) characteristics of octopamine were investigated experimentally and theoretically by applying appropriate level of theory, B3LYP-D3BJ/6-311++G(d,p), which reproduced well the experimental bond lengths and angles. The intramolecular interactions governing the stability of conformers were described by NBO and QTAIM analyses. The antiradical potencies of octopamine and norepinephrine towards DPPH and ABTS+ were examined with special emphasis on the preferred mechanism and effect of catechol moiety. Several techniques were used to distinguish Hydrogen Atom Transfer (HAT) and Proton Coupled Electron Transfer (PCET) mechanisms for reaction with DPPH. The calculated rate constants of the reactions with both radicals showed that Sequential Proton Loss Electron Transfer (SPLET) mechanism was dominant both thermodynamically and kinetically, with values of thermodynamic functions and rate constants clearly proving the importance of the second hydroxyl group in structure. The Molecular Docking and afterward Molecular Dynamics calculations of formed complexes between octopamine/norepinephrine with ß1- and ß2- adrenergic receptors examined in details the interactions that lead to the formation of stable complexes. The number of strong interactions of amino acids with norepinephrine was higher, but the absence of hydroxyl group in octopamine did not lead to a significant change in the type of interactions and stability. The formed complexes showed higher flexibility of amino acids, similar compactness of structure as proteins and increased interatomic distances of the backbone when compared to pure proteins.


Asunto(s)
Depuradores de Radicales Libres/química , Neurotransmisores/química , Norepinefrina/química , Octopamina/química , Animales , Camélidos del Nuevo Mundo , Depuradores de Radicales Libres/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neurotransmisores/metabolismo , Norepinefrina/metabolismo , Octopamina/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Pavos
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 421-429, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30172238

RESUMEN

The coumarin-orthoaminophenol derivative was prepared under mild conditions. Based on crystallographic structure, IR and Raman, 1H and 13C NMR spectra the most applicable theoretical method was determined to be B3LYP-D3BJ. The stability and reactivity parameters were calculated, in the framework of NBO, QTAIM and Fukui functions, form the optimized structure. This reactivity was then probed in biological systems. The antimicrobial activity towards four bacteria and three fungi species was examined and activity was proven. In vitro cytotoxic effects, against human epithelial colorectal carcinoma HCT-116 and human healthy lung MRC-5 cell lines, of the investigated substance are also tested. Compound showed significant cytotoxic effects on HCT-116 cells, while on MRC-5 cells showed no cytotoxic effects. The effect of hydroxy group in ortho-position on the overall reactivity of molecule was examined through molecular docking with Glutathione-S-transferases.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Cumarinas/química , Etilenodiaminas/química , Antibacterianos/farmacología , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Cumarinas/farmacología , Etilenodiaminas/farmacología , Células HCT116 , Humanos , Espectroscopía de Resonancia Magnética , Viabilidad Microbiana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA