Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 184(13): 3358-3360, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34171318

RESUMEN

Plant intracellular NLR proteins detect pathogen effectors and then form multimeric protein complexes ("resistosomes") that activate immune responses and cell death through unknown mechanisms. In this issue of Cell, Bi et al. show that the ZAR1 resistosome exhibits cation channel activity, enabling calcium influx that activates defense mechanisms and culminates in cell death.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Muerte Celular , Plantas , Transducción de Señal
2.
Nature ; 592(7852): 110-115, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692545

RESUMEN

The plant immune system involves cell-surface receptors that detect intercellular pathogen-derived molecules, and intracellular receptors that activate immunity upon detection of pathogen-secreted effector proteins that act inside the plant cell. Immunity mediated by surface receptors has been extensively studied1, but that mediated by intracellular receptors has rarely been investigated in the absence of surface-receptor-mediated immunity. Furthermore, interactions between these two immune pathways are poorly understood. Here, by activating intracellular receptors without inducing surface-receptor-mediated immunity, we analyse interactions between these two distinct immune systems in Arabidopsis. Pathogen recognition by surface receptors activates multiple protein kinases and NADPH oxidases, and we find that intracellular receptors primarily potentiate the activation of these proteins by increasing their abundance through several mechanisms. Likewise, the hypersensitive response that depends on intracellular receptors is strongly enhanced by the activation of surface receptors. Activation of either immune system alone is insufficient to provide effective resistance against the bacterial pathogen Pseudomonas syringae. Thus, immune pathways activated by cell-surface and intracellular receptors in plants mutually potentiate to activate strong defences against pathogens. These findings reshape our understanding of plant immunity and have broad implications for crop improvement.


Asunto(s)
Arabidopsis/inmunología , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Arabidopsis/citología , Arabidopsis/microbiología , Muerte Celular , NADPH Oxidasas/metabolismo , Células Vegetales/inmunología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Quinasas/metabolismo , Pseudomonas fluorescens/inmunología , Pseudomonas syringae/inmunología , Pseudomonas syringae/patogenicidad , Transducción de Señal/inmunología
3.
Plant Cell ; 34(5): 1447-1478, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35167697

RESUMEN

Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.


Asunto(s)
Inmunidad de la Planta , Receptores de Reconocimiento de Patrones , Productos Agrícolas/metabolismo , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/genética
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880132

RESUMEN

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY Perception of AvrRps4C by RRS1WRKY is mediated by the ß2-ß3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C Structure-based mutations that disrupt AvrRps4C-RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY-W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Muerte Celular , Clonación Molecular , ADN de Plantas , Regulación de la Expresión Génica de las Plantas/inmunología , Modelos Moleculares , Mutación , Proteínas de Plantas/genética , Conformación Proteica , Pseudomonas syringae/inmunología , Nicotiana
5.
Proc Natl Acad Sci U S A ; 117(31): 18832-18839, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32709746

RESUMEN

Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Transducción de Señal , Animales , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Mamíferos , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
6.
J Exp Bot ; 72(22): 7927-7941, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34387350

RESUMEN

Activation of cell-surface and intracellular receptor-mediated immunity results in rapid transcriptional reprogramming that underpins disease resistance. However, the mechanisms by which co-activation of both immune systems lead to transcriptional changes are not clear. Here, we combine RNA-seq and ATAC-seq to define changes in gene expression and chromatin accessibility. Activation of cell-surface or intracellular receptor-mediated immunity, or both, increases chromatin accessibility at induced defence genes. Analysis of ATAC-seq and RNA-seq data combined with publicly available information on transcription factor DNA-binding motifs enabled comparison of individual gene regulatory networks activated by cell-surface or intracellular receptor-mediated immunity, or by both. These results and analyses reveal overlapping and conserved transcriptional regulatory mechanisms between the two immune systems.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Resistencia a la Enfermedad , Humanos , Factores de Transcripción/genética
7.
Proc Natl Acad Sci U S A ; 115(41): 10218-10227, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254172

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R-RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector's authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY-domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY-domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a "reversibly closed" conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Transferencia Resonante de Energía de Fluorescencia , Complejos Multiproteicos/inmunología , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente , Conformación Proteica , Dominios Proteicos , Ralstonia solanacearum/patogenicidad , Nicotiana/genética , Nicotiana/inmunología
8.
Plant Biotechnol J ; 18(7): 1610-1619, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31916350

RESUMEN

The plant immune system involves detection of pathogens via both cell-surface and intracellular receptors. Both receptor classes can induce transcriptional reprogramming that elevates disease resistance. To assess differential gene expression during plant immunity, we developed and deployed quantitative sequence capture (CAP-I). We designed and synthesized biotinylated single-strand RNA bait libraries targeted to a subset of defense genes, and generated sequence capture data from 99 RNA-seq libraries. We built a data processing pipeline to quantify the RNA-CAP-I-seq data, and visualize differential gene expression. Sequence capture in combination with quantitative RNA-seq enabled cost-effective assessment of the expression profile of a specified subset of genes. Quantitative sequence capture is not limited to RNA-seq or any specific organism and can potentially be incorporated into automated platforms for high-throughput sequencing.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Análisis de Secuencia de ARN
9.
J Exp Bot ; 71(6): 2186-2197, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32050020

RESUMEN

Plant nucleotide-binding domain, leucine-rich repeat receptor (NLR) proteins play important roles in recognition of pathogen-derived effectors. However, the mechanism by which plant NLRs activate immunity is still largely unknown. The paired Arabidopsis NLRs RRS1-R and RPS4, that confer recognition of bacterial effectors AvrRps4 and PopP2, are well studied, but how the RRS1/RPS4 complex activates early immediate downstream responses upon effector detection is still poorly understood. To study RRS1/RPS4 responses without the influence of cell surface receptor immune pathways, we generated an Arabidopsis line with inducible expression of the effector AvrRps4. Induction does not lead to hypersensitive cell death response (HR) but can induce electrolyte leakage, which often correlates with plant cell death. Activation of RRS1 and RPS4 without pathogens cannot activate mitogen-associated protein kinase cascades, but still activates up-regulation of defence genes, and therefore resistance against bacteria.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estradiol , Proteínas NLR/genética , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas/genética
10.
PLoS Pathog ; 13(5): e1006376, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475615

RESUMEN

Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas NLR/genética , Proteínas NLR/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Mapeo de Interacción de Proteínas , Receptores Inmunológicos/genética , Plantones/citología , Plantones/genética , Plantones/inmunología , Plantones/fisiología , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo
11.
New Phytol ; 222(2): 966-980, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30582759

RESUMEN

Most land plant genomes carry genes that encode RPW8-NLR Resistance (R) proteins. Angiosperms carry two RPW8-NLR subclasses: ADR1 and NRG1. ADR1s act as 'helper' NLRs for multiple TIR- and CC-NLR R proteins in Arabidopsis. In angiosperm families, NRG1 co-occurs with TIR-NLR Resistance (R) genes. We tested whether NRG1 is required for signalling of multiple TIR-NLRs. Using CRISPR mutagenesis, we obtained an nrg1a-nrg1b double mutant in two Arabidopsis accessions, and an nrg1 mutant in Nicotiana benthamiana. These mutants are compromised in signalling of all TIR-NLRs tested, including WRR4A, WRR4B, RPP1, RPP2, RPP4 and the pairs RRS1/RPS4, RRS1B/RPS4B, CHS1/SOC3 and CHS3/CSA1. In Arabidopsis, NRG1 is required for the hypersensitive cell death response (HR) and full oomycete resistance, but not for salicylic acid induction or bacterial resistance. By contrast, nrg1 loss of function does not compromise the CC-NLR R proteins RPS5 and MLA. RPM1 and RPS2 (CC-NLRs) function is slightly compromised in an nrg1 mutant. Thus, NRG1 is required for full TIR-NLR function and contributes to the signalling of some CC-NLRs. Some NRG1-dependent R proteins also signal partially via the NRG1 sister clade, ADR1. We propose that some NLRs signal via NRG1 only, some via ADR1 only and some via both or neither.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas NLR/metabolismo , Inmunidad de la Planta , Receptores Inmunológicos/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteína 9 Asociada a CRISPR/metabolismo , Resistencia a la Enfermedad , Modelos Biológicos , Mutación/genética , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología
12.
Plant Cell ; 28(10): 2603-2615, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27758894

RESUMEN

Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ1-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Pipecólicos/metabolismo , Transaminasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Transaminasas/genética
13.
New Phytol ; 217(1): 344-354, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28898429

RESUMEN

Salicylic acid (SA) and pipecolic acid (Pip) play important roles in plant immunity. Here we analyzed the roles of transcription factors TGACG-BINDING FACTOR 1 (TGA1) and TGA4 in regulating SA and Pip biosynthesis in Arabidopsis thaliana. We quantified the expression levels of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), which encode two master transcription factors of plant immunity, and the accumulation of SA and Pip in tga1-1 tga4-1 mutant plants. We tested whether SARD1 and CBP60g are direct targets of TGA1 by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). In addition to promoting pathogen-induced SA biosynthesis, we found that SARD1 and CBP60g also positively regulated Pip biosynthesis by targeting genes encoding key biosynthesis enzymes of Pip. TGA1/TGA4 were required for full induction of SARD1 and CBP60g in plant defense. ChIP-PCR analysis showed that SARD1 was a direct target of TGA1. In tga1-1 tga4-1 mutant plants, the expression levels of SARD1 and CBP60g along with SA and Pip accumulation following pathogen infection were dramatically reduced compared with those in wild-type plants. Consistent with reduced expression of SARD1 and CBP60g, pathogen-associated molecular pattern (PAMP)-induced pathogen resistance and systemic acquired resistance were compromised in tga1-1 tga4-1. Our study showed that TGA1 and TGA4 regulate Pip and SA biosynthesis by modulating the expression of SARD1 and CBP60g.


Asunto(s)
Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ácidos Pipecólicos/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Mutación , Inmunidad de la Planta
14.
Plant Physiol ; 161(4): 2146-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23424249

RESUMEN

In fungi and metazoans, extracellular signals are often perceived by G-protein-coupled receptors (GPCRs) and transduced through heterotrimeric G-protein complexes to downstream targets. Plant heterotrimeric G proteins are also involved in diverse biological processes, but little is known about their upstream receptors. Moreover, the presence of bona fide GPCRs in plants is yet to be established. In Arabidopsis (Arabidopsis thaliana), heterotrimeric G protein consists of one Gα subunit (G protein α-subunit1), one Gß subunit (Arabidopsis G protein ß-subunit1 [AGB1]), and three Gγs subunits (Arabidopsis G protein γ-subunit1 [AGG1], AGG2, and AGG3). We identified AGB1 from a suppressor screen of BAK1-interacting receptor-like kinase1-1 (bir1-1), a mutant that activates cell death and defense responses mediated by the receptor-like kinase (RLK) suppressor of BIR1-1. Mutations in AGB1 suppress the cell death and defense responses in bir1-1 and transgenic plants overexpressing suppressor of BIR1-1. In addition, agb1 mutant plants were severely compromised in immunity mediated by three other RLKs, flagellin-sensitive2 (FLS2), Elongation Factor-TU RECEPTOR (EFR), and chitin elicitor receptor kinase1 (CERK1), respectively. By contrast, G protein α-subunit1 is not required for either cell death in bir1-1 or pathogen-associated molecular pattern-triggered immunity mediated by FLS2, EFR, and CERK1. Further analysis of agg1 and agg2 mutant plants indicates that AGG1 and AGG2 are also required for pathogen-associated molecular pattern-triggered immune responses mediated by FLS2, EFR, and CERK1, as well as cell death and defense responses in bir1-1. We hypothesize that the Arabidopsis heterotrimeric G proteins function as a converging point of plant defense signaling by mediating responses initiated by multiple RLKs, which may fulfill equivalent roles to GPCRs in fungi and animals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/inmunología , Arabidopsis/citología , Arabidopsis/microbiología , Muerte Celular , Clonación Molecular , Resistencia a la Enfermedad/inmunología , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Subunidades de Proteína/metabolismo , Pseudomonas syringae/fisiología , Receptores de Reconocimiento de Patrones , Supresión Genética
15.
Cell Host Microbe ; 32(9): 1552-1565.e8, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39111320

RESUMEN

Disease tolerance is an essential defense strategy against pathogens, alleviating tissue damage regardless of pathogen multiplication. However, its genetic and molecular basis remains largely unknown. Here, we discovered that protein condensation at the endoplasmic reticulum (ER) regulates disease tolerance in Arabidopsis against Pseudomonas syringae. During infection, Hematopoietic protein-1 (HEM1) and Bax-inhibitor 1 (BI-1) coalesce into ER-associated condensates facilitated by their phase-separation behaviors. While BI-1 aids in clearing these condensates via autophagy, it also sequesters lipid-metabolic enzymes within condensates, likely disturbing lipid homeostasis. Consequently, mutations in hem1, which hinder condensate formation, or in bi-1, which prevent enzyme entrapment, enhance tissue-damage resilience, and preserve overall plant health during infection. These findings suggest that the ER is a crucial hub for maintaining cellular homeostasis and establishing disease tolerance. They also highlight the potential of engineering disease tolerance as a defense strategy to complement established resistance mechanisms in combating plant diseases.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Retículo Endoplásmico , Enfermedades de las Plantas , Pseudomonas syringae , Arabidopsis/microbiología , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/patogenicidad , Autofagia
16.
Nat Commun ; 15(1): 6748, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117606

RESUMEN

To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplásmico , Gotas Lipídicas , Mutación , Semillas , Proteína que Contiene Valosina , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Gotas Lipídicas/metabolismo , Proteostasis , Proteolisis , Regulación de la Expresión Génica de las Plantas , Longevidad/fisiología , Longevidad/genética
17.
Plant Physiol ; 159(4): 1857-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22740615

RESUMEN

Plants utilize a large number of immune receptors to recognize pathogens and activate defense responses. A small number of these receptors belong to the receptor-like protein family. Previously, we showed that a gain-of-function mutation in the receptor-like protein SNC2 (for Suppressor of NPR1, Constitutive2) leads to constitutive activation of defense responses in snc2-1D mutant plants. To identify defense signaling components downstream of SNC2, we carried out a suppressor screen in the snc2-1D mutant background of Arabidopsis (Arabidopsis thaliana). Map-based cloning of one of the suppressor genes, BDA1 (for bian da; "becoming big" in Chinese), showed that it encodes a protein with amino-terminal ankyrin repeats and carboxyl-terminal transmembrane domains. Loss-of-function mutations in BDA1 suppress the dwarf morphology and constitutive defense responses in snc2-1D npr1-1 (for nonexpressor of pathogenesis-related genes1,1) and also result in enhanced susceptibility to bacterial pathogens. In contrast, a gain-of-function allele of bda1 isolated from a separate genetic screen to search for mutants with enhanced pathogen resistance was found to constitutively activate cell death and defense responses. These data suggest that BDA1 is a critical signaling component that functions downstream of SNC2 to regulate plant immunity.


Asunto(s)
Repetición de Anquirina , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Inmunidad de la Planta/inmunología , Alelos , Arabidopsis/citología , Arabidopsis/microbiología , Secuencia de Bases , Muerte Celular , Clonación Molecular , Resistencia a la Enfermedad/inmunología , Proteínas de la Membrana/química , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Receptores de Reconocimiento de Patrones/metabolismo , Factores de Transcripción/metabolismo
18.
Plant Cell ; 22(9): 3153-63, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20841424

RESUMEN

Plant immune receptors belonging to the receptor-like protein (RLP) family contain extracellular leucine-rich repeats (LRRs) and a short cytoplasmic tail linked by a single transmembrane motif. Here, we report the identification of snc2-1D (for suppressor of npr1-1, constitutive 2), a semidominant Arabidopsis thaliana mutant with constitutively activated defense responses. Map-based cloning of snc2-1D showed that it encodes an RLP. The point mutation in snc2-1D leads to substitution of the second Gly for Arg in the conserved GXXXG motif of the transmembrane helix, suggesting that this residue is important for negative regulation of the protein. Epistasis analysis revealed that the snc2-1D mutant phenotype is not affected by mutations in genes known to be required for the nucleotide binding (NB)-LRR Resistance (R) protein signaling. A suppressor screen of snc2-1D was performed, and map-based cloning of one suppressor revealed that mutations in WRKY70 suppress the constitutive defense responses in snc2-1D, suggesting that WRKY70 functions downstream of snc2-1D. The identification of snc2-1D provides us with a unique system for genetic analysis of resistance pathways downstream of RLPs, which may be distinct from those downstream of NB-LRR type R proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonación Molecular , Análisis Mutacional de ADN , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Mutación Puntual , Factores de Transcripción/genética
19.
Proc Natl Acad Sci U S A ; 107(42): 18220-5, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921422

RESUMEN

Salicylic acid (SA) is a defense hormone required for both local and systemic acquired resistance (SAR) in plants. Pathogen infections induce SA synthesis through up-regulating the expression of Isochorismate Synthase 1 (ICS1), which encodes a key enzyme in SA production. Here we report that both SAR Deficient 1 (SARD1) and CBP60g are key regulators for ICS1 induction and SA synthesis. Whereas knocking out SARD1 compromises basal resistance and SAR, overexpression of SARD1 constitutively activates defense responses. In the sard1-1 cbp60g-1 double mutant, pathogen-induced ICS1 up-regulation and SA synthesis are blocked in both local and systemic leaves, resulting in compromised basal resistance and loss of SAR. Electrophoretic mobility shift assays showed that SARD1 and CBP60g represent a plant-specific family of DNA-binding proteins. Both proteins are recruited to the promoter of ICS1 in response to pathogen infections, suggesting that they control SA synthesis by regulating ICS1 at the transcriptional level.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas
20.
PLoS Genet ; 6(12): e1001250, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203492

RESUMEN

Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)-mediated nuclear protein import, Nuclear Export Signal (NES)-dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107-160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Núcleo Celular/genética , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA