Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Med ; 22(1): 205, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769537

RESUMEN

BACKGROUND: It is unclear whether brief interventions using the combined classification of alcohol-metabolizing enzymes aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) together with behavioral changes in alcohol use can reduce excessive alcohol consumption. This study aimed to examine the effects of a brief intervention based on the screening of ALDH2 and ADH1B gene polymorphisms on alcohol consumption in Japanese young adults. METHODS: In this open-label randomized controlled trial, we enrolled adults aged 20-30 years who had excessive drinking behavior (average amount of alcohol consumed: men, ≥ 4 drinks/per day and women, ≥ 2 drinks/per day; 1 drink = 10 g of pure alcohol equivalent). Participants were randomized into intervention or control group using a simple random number table. The intervention group underwent saliva-based genotyping of alcohol-metabolizing enzymes (ALDH2 and ADH1B), which were classified into five types. A 30-min in-person or online educational counseling was conducted approximately 1 month later based on genotyping test results and their own drinking records. The control group received traditional alcohol education. Average daily alcohol consumption was calculated based on the drinking diary, which was recorded at baseline and at 3 and 6 months of follow-up. The primary endpoint was average daily alcohol consumption, and the secondary endpoints were the alcohol-use disorder identification test for consumption (AUDIT-C) score and behavioral modification stages assessed using a transtheoretical model. RESULTS: Participants were allocated to the intervention (n = 100) and control (n = 96) groups using simple randomization. Overall, 28 (29.2%) participants in the control group and 21 (21.0%) in the intervention group did not complete the follow-up. Average alcohol consumption decreased significantly from baseline to 3 and 6 months in the intervention group but not in the control group. The reduction from baseline alcohol consumption values and AUDIT-C score at 3 months were greater in the intervention group than in the control group (p < 0.001). In addition, the behavioral modification stages were significantly changed by the intervention (p < 0.001). CONCLUSIONS: Genetic testing for alcohol-metabolizing enzymes and health guidance on type-specific excessive drinking may be useful for reducing sustained average alcohol consumption associated with behavioral modification. TRIAL REGISTRATION: R000050379, UMIN000044148, Registered on June 1, 2021.


Asunto(s)
Alcohol Deshidrogenasa , Consumo de Bebidas Alcohólicas , Aldehído Deshidrogenasa Mitocondrial , Humanos , Masculino , Femenino , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Adulto , Aldehído Deshidrogenasa Mitocondrial/genética , Consumo de Bebidas Alcohólicas/genética , Adulto Joven , Genotipo , Etanol/metabolismo , Polimorfismo Genético , Resultado del Tratamiento , Japón
2.
BMC Public Health ; 24(1): 150, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200433

RESUMEN

BACKGROUND: We recently demonstrated that a 12-week intervention consisting of the provision of free non-alcoholic beverages reduced alcohol consumption in excessive drinkers for 8 weeks after the intervention. However, gender differences in this effect were not explored. Thus, this secondary analysis investigated gender differences in the influence of non-alcoholic beverage provision on alcohol consumption. METHODS: Individuals who frequently drank excessively (at least 40 g/day in men and 20 g/day in women) and who were not diagnosed with alcoholism were recruited. Participants were randomized into the intervention or control group by simple randomization using a random number table. In the intervention group, free non-alcoholic beverages were provided once every 4 weeks for 12 weeks (three times in total). The consumption of alcoholic and non-alcoholic beverages was calculated based on a drinking diary submitted with the previous 4 weeks' of data. In this study, we compared the longitudinal changes in alcohol consumption between genders in both groups. RESULTS: The provision of non-alcoholic beverages significantly reduced alcohol consumption in both genders; however, significant differences in alcohol consumption between the control and intervention groups were observed only in men. The average alcohol consumption during the intervention fell below the level associated with a high risk of non-communicable diseases in men (32.7 g/day), but not in women (24.8 g/day). Correlation coefficient analysis showed that replacing alcoholic beverages with the provided non-alcoholic beverages resulted in different drinking patterns according to gender. The percent changes in the consumption of alcoholic and non-alcoholic beverages relative to baseline levels did not differ between genders. CONCLUSIONS: Our results suggest that the provision of non-alcoholic beverages reduced alcohol consumption irrespective of gender. Of note, providing non-alcoholic beverages might be particularly useful for reducing high-risk alcohol consumption in male excessive drinkers. TRIAL REGISTRATION: UMIN UMIN000047949. Registered 4 June 2022.


Asunto(s)
Alcoholismo , Bebidas , Femenino , Humanos , Masculino , Factores Sexuales , Alimentos , Consumo de Bebidas Alcohólicas/epidemiología
3.
J Therm Biol ; 119: 103801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38310810

RESUMEN

Skeletal muscle is a highly plastic tissue. The role of heat shock protein 72 (Hsp72) in heat stress-induced skeletal muscle hypertrophy has been well demonstrated; however, the precise mechanisms remain unclear. Essential amino acids, such as leucine, mainly mediate muscle protein synthesis. We investigated the effects of pre-heating and increased Hsp72 expression on the mechanistic target of rapamycin (mTOR) signaling and protein synthesis following leucine administration in rat gastrocnemius muscle. To ensure increased Hsp72 expression in both the red and white portions of the muscle, one leg of male Wistar rats (10-week-old, n = 23) was heat-stressed in 43 °C water for 30 min twice at a 48-h-interval (heat-stressed leg, HS leg). The contralateral leg served as a non-heated internal control (CT leg). After the recovery period (48 h), rats were divided into the pre-administration or oral leucine administration groups. We harvested the gastrocnemius muscle (red and white parts) prior to administration and 30 and 90 min after leucine treatment (n = 7-8 per group) and intramuscular signaling responses to leucine ingestion were determined using western blotting. Heat stress significantly upregulated the expression of Hsp72 and was not altered by leucine administration. Although the phosphorylation levels of mTOR/S6K1 and ERK were similar regardless of heating, 4E-BP1 was less phosphorylated in the HS legs than the CT legs after leucine administration in the red portion of the muscles (P < 0.05). Moreover, c-Myc expression differed significantly after leucine administration in both the red and white portions of the muscles. Our findings indicate that following oral leucine administration, pre-heating partially blunted the muscle protein synthesis signaling response in the rat gastrocnemius muscle.


Asunto(s)
Calefacción , Transducción de Señal , Ratas , Masculino , Animales , Leucina/farmacología , Ratas Sprague-Dawley , Ratas Wistar , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacología , Suplementos Dietéticos
4.
BMC Med ; 21(1): 379, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784187

RESUMEN

BACKGROUND: The use of alcohol-flavored beverages not containing alcohol (hereinafter referred to as non-alcoholic beverages) is recommended to reduce alcohol consumption. However, it is unclear if this reduces excessive drinking. OBJECTIVE: To verify whether non-alcoholic beverages impact the alcohol consumption of excessive drinkers. STUDY DESIGN: Single-center, open-label, randomized, parallel-group study. METHODS: Participants aged 20 years or older who were not diagnosed with alcoholism, who drank at least four times a week, and whose alcohol consumption on those days was at least 40 g in males and 20 g in females, were recruited. Participants were randomized into the intervention or control group by simple randomization using a random number table. In the intervention group, free non-alcoholic beverages were provided once every 4 weeks for 12 weeks (three times in total), and thereafter, the number of alcoholic and non-alcoholic beverages consumed were recorded for up to 20 weeks. The consumption of alcoholic and non-alcoholic beverages was calculated based on a drinking diary submitted with the previous 4 weeks of data. The primary endpoint was the change from baseline in total alcohol consumption during past 4 weeks at week 12. The participants were not blinded to group allocations. RESULTS: Fifty-four participants (43.9%) were allocated to the intervention group and 69 (56.1%) to the control group. None of the participants in the intervention group dropped out, compared to two (1.6%) in the control group. The change in alcohol consumption was - 320.8 g (standard deviation [SD], 283.6) in the intervention group and - 76.9 g (SD, 272.6) in the control group at Week 12, indicating a significant difference (p < 0.001). Even at Week 20 (8 weeks after the completion of the intervention), the change was - 276.9 g (SD, 39.1) in the intervention group, which was significantly greater than - 126.1 g (SD, 41.3) in the control group (p < 0.001). The Spearman rank correlation coefficient between the change in non-alcoholic beverage consumption and alcohol consumption at Week 12 was significantly negative only in the intervention group (ρ = - 0.500, p < 0.001). There were no reports of adverse events during the study. CONCLUSIONS: Providing non-alcoholic beverages significantly reduced alcohol consumption, an effect that persisted for 8 weeks after the intervention. TRIAL REGISTRATION: UMIN UMIN000047949. Registered 4 June 2022.


Asunto(s)
Consumo de Bebidas Alcohólicas , Alcoholismo , Masculino , Femenino , Humanos , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Bebidas Alcohólicas/efectos adversos , Bebidas Alcohólicas , Bebidas , Etanol
5.
Int J Sports Med ; 40(8): 544-550, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31288294

RESUMEN

Circumference measurements have been used to estimate muscle cross-sectional area (CSA) in clinical settings. Measurements of thigh circumference are affected by muscle and subcutaneous fat (SF). In fact, SF could increase over a short period. Therefore, clarifying the relationship between thigh circumference and muscle and SF following ACL reconstruction is important. This study's primary purpose was to examine pre- and post-operative changes in thigh circumference, thigh muscles and SF CSAs in both legs. Secondary, the relationship between thigh circumference and muscle and SF CSAs was examined to demonstrate that circumference measurements could be used to detect atrophy. Quadriceps, hamstrings, and SF CSAs at 15, 10, and 5 cm proximal to the patella were measured by MRI pre- and 4 weeks postoperatively to examine how reconstruction affected those tissues in the thighs. The results showed increases in SF CSA (r=0.72 at 10 cm, r=0.67 at 15 cm) greatly affected thigh circumference in females on the surgical side. In males, increases in SF CSA (r=0.83) at 15- and 5-cm and decreases in quadriceps muscle CSA (r=0.73) at 5 cm affected thigh circumference on the surgical side. Thigh circumference measurements might not reflect actual muscle CSA in ACL patients.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Músculos Isquiosurales/anatomía & histología , Atrofia Muscular/patología , Músculo Cuádriceps/anatomía & histología , Grasa Subcutánea/anatomía & histología , Muslo/anatomía & histología , Adolescente , Adulto , Femenino , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Atrofia Muscular/diagnóstico por imagen , Periodo Posoperatorio , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/patología , Grasa Subcutánea/diagnóstico por imagen , Grasa Subcutánea/patología , Muslo/diagnóstico por imagen , Muslo/patología , Adulto Joven
6.
Exp Physiol ; 101(10): 1276-1284, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27435029

RESUMEN

NEW FINDINGS: What is the central question of this study? Acute hypoxia reduces dynamic cerebral autoregulation (dCA); however, it is unclear what level of hypoxia is necessary to exert this effect. We sought to investigate whether dCA would be reduced during progressive periods of normobaric hypoxia using a duplex Doppler ultrasound technique to evaluate the volumetric blood flow. What is the main finding and its importance? We showed that dCA decreased linearly as inspired O2 decreased from 21 to 12%. Additionally, symptoms of acute mountain sickness were related to changes in dCA. Our results may provide a sensitive and clinically relevant test to evaluate the risk of acute mountain sickness. Cerebral blood flow is maintained at relatively constant levels over a wide range of perfusion pressures via cerebral autoregulation (CA). Although acute hypoxia reduces dynamic CA, it is unclear what level of hypoxia is necessary to exert this effect. We evaluated dynamic CA during progressive normobaric hypoxia (∼1 h at each of 21, 18, 15 and 12% O2 ) using duplex ultrasonography to measure volumetric changes in common carotid artery blood flow of 11 healthy young men. Dynamic CA was evaluated by the thigh-cuff method and represented as the rate of regulation of vascular conductance. On a separate occasion, symptoms of acute mountain sickness were evaluated during 6 h of prolonged hypoxia (fractional inspired O2 of 14.1%) using the Lake Louise Questionnaire. Repeated-measures ANOVA with linear trend analysis indicated that dynamic CA decreased progressively as fractional inspired O2 was reduced (P < 0.001). Spearman rank order analysis revealed that symptoms of acute mountain sickness were related to changes in the rate of regulation of vascular conductance from 21 to 15% (r = -0.869, P = 0.006) and from 21 to 12% O2 (r = -0.648, P = 0.040), respectively. These results suggest that dynamic CA worsens with progressive hypoxia and that reductions in dynamic CA during moderate to severe hypoxia (<15% O2 ) may be related to the severity of acute mountain sickness.


Asunto(s)
Encéfalo/fisiopatología , Homeostasis/fisiología , Hipoxia/fisiopatología , Enfermedad Aguda , Adulto , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Encéfalo/metabolismo , Arterias Carótidas/metabolismo , Arterias Carótidas/fisiopatología , Circulación Cerebrovascular/fisiología , Humanos , Hipoxia/metabolismo , Oxígeno/metabolismo , Adulto Joven
7.
Adv Exp Med Biol ; 876: 95-100, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26782200

RESUMEN

We investigated the relation between blood pressure and cerebral oxygenation (COX) immediately after exercise in ten healthy males. Subjects completed an exercise and recovery protocol while breathing either 21% (normoxia) or 14.1% (hypoxia) O2 in a randomized order. Each exercise session included four sets of cycling (30 min/set, 15 min rest) at 50% of altitude-adjusted peak oxygen uptake, followed by 60 min of recovery. After exercise, mean arterial pressure (MAP; 87±1 vs. 84±1 mmHg, average values across the recovery period) and COX (68±1% vs. 58±1%) were lower in hypoxia compared to normoxia (P<0.001). Changes in MAP and COX were correlated during the recovery period in hypoxia (r=0.568, P<0.001) but not during normoxia (r=0.028, not significant). These results demonstrate that reductions in blood pressure following exercise in hypoxia are (1) more pronounced than in normoxia, and (2) associated with reductions in COX. Together, these results suggest an impairment in cerebral autoregulation as COX followed changes in MAP more passively in hypoxia than in normoxia. These findings could help explain the increased risk for postexercise syncope at high altitude.


Asunto(s)
Presión Arterial/fisiología , Encéfalo/metabolismo , Ejercicio Físico/fisiología , Hipoxia/metabolismo , Oxígeno/metabolismo , Adulto , Altitud , Humanos , Masculino , Síncope/etiología
8.
Physiol Rep ; 12(1): e15913, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185480

RESUMEN

Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.


Asunto(s)
Trastornos de Estrés por Calor , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratas , Animales , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas del Choque Térmico HSP72 , Músculo Esquelético
9.
Med Sci Sports Exerc ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38758538

RESUMEN

PURPOSE: Exercise benefits the body and mind, but its weight loss effect is less than generally expected. Although this phenomenon is likely due to an exercise intensity-dependent decrease in non-exercise physical activity (NEPA), resulting in a decrease in non-exercise activity thermogenesis, the underlying mechanisms and effects of exercise intensity remain unknown. Here we show that acute vigorous exercise decreases subsequent NEPA and body temperature (BT) in association with body weight gain. METHODS: Adult male C57BL/6 J mice were categorized into three groups: sedentary, moderate exercise, and vigorous exercise, with exercise groups undergoing a 30 min treadmill session. Using an intraperitoneally implanted activity monitor, NEPA and BT were monitored for two days before and three days after exercise. The daily synchrony between NEPA and BT was evaluated using a cross-correlation function. Plasma corticosterone was also detected 6 and 24 h after exercise. RESULTS: Notably, Only the vigorous exercise group exhibited a decline in both NEPA and BT, resulting in body weight gain the following day, despite no observed changes in food intake. Furthermore, vigorous exercise induces a distinct delay in the daily dynamics of NEPA compared to BT. A positive correlation was observed between plasma corticosterone levels and changes in NEPA levels before and after exercise across all exercise groups. CONCLUSIONS: Our findings provide evidence for vigorous exercise-specific reduction in subsequent NEPA, BT, and their synchrony linked to weight gain, likely due to the disturbed circadian rhythm of corticosterone. This is an initial investigation redefining the significance of exercise intensity in beneficial effects beyond the energy expenditure of the exercise itself.

10.
Physiol Rep ; 11(10): e15695, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37226378

RESUMEN

This study investigated the impact of long-term physical inactivity on hepatic cytoprotective- and inflammatory-related protein expressions in young rats and the subsequent apoptotic response during microgravity stress simulated by tail suspension. Four-week-old male Wistar rats were randomly assigned to the control (CT) and physical inactivity (IN) groups. The floor space of the cages provided to the IN group was reduced to half of that provided to the CT group. After 8 weeks, rats in both groups (n = 6-7) underwent tail suspension. Their livers were harvested immediately before (0 day) or 1, 3, and 7 days after tail suspension. Levels of hepatic heat shock protein 72 (HSP72), an anti-apoptotic protein, reduced over 7 days of tail suspension in the IN group than in the CT group (p < 0.01). Fragmented nucleosomes in the cytoplasmic fraction of the liver, an apoptotic index, were drastically increased by physical inactivity and tail suspension, and this change was significantly greater after 7 days of tail suspension in the IN group than in the CT group (p < 0.01). The apoptotic response was accompanied by the upregulation of pro-apoptotic proteins (cleaved caspase-3 and -7). Moreover, the levels of other pro-apoptotic proteins (tumor necrosis factor-1α and histone deacetylase 5) were also significantly higher in the IN than in the CT group (p < 0.05). Our results indicated that 8 weeks of physical inactivity decreased hepatic HSP72 levels and promoted hepatic apoptosis during the subsequent 7 days of tail suspension.


Asunto(s)
Apoptosis , Suspensión Trasera , Masculino , Ratas , Animales , Suspensión Trasera/efectos adversos , Ratas Wistar , Hígado , Proteínas del Choque Térmico HSP72 , Factor de Necrosis Tumoral alfa
11.
J Physiol Sci ; 72(1): 6, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264097

RESUMEN

We investigated the protective effect of losartan, an angiotensin II type 1 receptor blocker, on soleus muscle atrophy. Age-matched male and female Wistar rats were subjected to hindlimb unloading, and the soleus muscle was removed on days 1 and 7 for analysis. Females showed greater reductions in relative weight and myofiber cross-sectional area of the soleus muscle than males on day 7 post-hindlimb unloading. Losartan partially protected females against muscle atrophy. Activation of the canonical TGF-ß signaling pathway, assessed via Smad2/3 phosphorylation, was lower in females following losartan treatment and associated with lower levels of protein ubiquitination after 1 (myofibril) and 7 (cytosol) days of unloading. However, no effect was observed in non-canonical TGF-ß signaling (p44/p42 and p38 MAPK phosphorylation) in males or females during unloading. Our results suggest that losartan provides partial protection against hindlimb unloading-induced soleus muscle atrophy in female rats, possibly associated with decreased canonical TGF-ß signaling.


Asunto(s)
Suspensión Trasera , Losartán , Animales , Femenino , Miembro Posterior , Suspensión Trasera/fisiología , Losartán/metabolismo , Losartán/farmacología , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
12.
Front Physiol ; 13: 843574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399262

RESUMEN

The aim of this study was to investigate the effects of either normoxic or hypoxic recovery condition on post-exercise hemodynamics after sprint interval leg cycling exercise rather than hemodynamics during exercise. The participants performed five sets of leg cycling with a maximal effort (30 s exercise for each set) with a 4-min recovery of unloaded cycling between the sets in hypoxia [fraction of inspired oxygen (FiO2) = 0.145]. The load during pedaling corresponded to 7.5% of the individual's body weight at the first set, and it gradually reduced from 6.5 to 5.5%, 4.5, and 3.5% for the second to fifth sets. After exercise, the participants rested in a sitting position for 30 min under normoxia (room-air) or hypoxia. Mean arterial pressure decreased over time during recovery (p < 0.001) with no condition and interaction effects (p > 0.05). Compared to pre-exercise values, at 30 min after exercise, mean arterial pressure decreased by 5.6 ± 4.8 mmHg (mean ± standard deviation) during hypoxic recovery, and by 5.3 ± 4.6 mmHg during normoxic recovery. Peripheral arterial oxygen saturation (SpO2) at all time points (5, 10, 20, and 30 min) during hypoxic recovery was lower than during normoxic recovery (all p < 0.05). The area under the hyperemic curve of tissue oxygen saturation (StO2) at vastus lateralis defined as reperfusion curve above the baseline values during hypoxic recovery was lower than during normoxic recovery (p < 0.05). Collectively, post-exercise hypotension after sprint interval leg cycling exercise was not affected by either normoxic or hypoxic recovery despite marked differences in SpO2 and StO2 during recovery between the two conditions.

13.
Eur J Pharmacol ; 931: 175223, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35988789

RESUMEN

Losartan, an angiotensin II type 1 receptor blocker, exerts protective effect on soleus muscle atrophy in female rats. Thus, we aimed to examine the effect of losartan treatment on the recovery of atrophied soleus muscles. Female Wistar rats were subjected to hindlimb unloading for 7 d and then reloading for 7 d with either phosphate-buffered saline (PBS; n = 9) or losartan (40 mg/kg/day; n = 9). The soleus muscles were removed at rest (sedentary control [SED]; n = 9), after 7 d of hindlimb unloading (HU; n = 9), and after 7 d of reloading (HUR-PBS or HUR-LOS; n = 9 each). The absolute and relative weights, and fiber cross-sectional area (CSA) of the soleus muscles of rats in the HU group were significantly reduced as compared to those of the rats in the SED group at 7 d post-hindlimb unloading. Seven days of reloading significantly increased the muscle weights of rats in the HUR-PBS and HUR-LOS groups, with the recovery rate of the absolute muscle weight and type I fiber CSA being significantly higher in the HUR-LOS group (6.1% and 10.1%, respectively) than in the HUR-PBS group (4.7% and 5.2%, respectively) (p < 0.05). Moreover, the absolute and relative muscle weight in HUR-PBS were lower than SED; however, no significant difference was observed between the SED and HUR-LOS groups. CSAs of type I and IIa fiber were significantly higher in the HUR-LOS group than in the HU group. Losartan administration during reloading resulted in increased Smad1/5/8 and mTOR signaling and decreased Smad2/3 signaling and protein ubiquitination, facilitating the recovery of atrophied soleus muscle. Therefore, losartan administration-induced muscle recovery may partially be attributed to enhanced Smad1/5/8 and mTOR signaling activation, and reduced activation of canonical TGF-ß signaling (Smad2/3) in the soleus muscle.


Asunto(s)
Suspensión Trasera , Losartán , Animales , Femenino , Miembro Posterior , Losartán/farmacología , Losartán/uso terapéutico , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ratas , Ratas Wistar , Proteínas Smad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
J Physiol Anthropol ; 41(1): 36, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280884

RESUMEN

BACKGROUND: Several factors have been shown to contribute to hypoxic-induced declined in aerobic capacity. In the present study, we investigated the effects of resting hypoxic ventilatory and cardiac responses (HVR and HCR) on hypoxic-induced declines in peak oxygen uptake ([Formula: see text]O2peak). METHODS: Peak oxygen uptakes was measured in normobaric normoxia (room air) and hypoxia (14.1% O2) for 10 young healthy men. The resting HVR and HCR were evaluated at multiple steps of hypoxia (1 h at each of 21, 18, 15 and 12% O2). Arterial desaturation (ΔSaO2) was calculate by the difference between SaO2 at normoxia-at each level of hypoxia (%). HVR was calculate by differences in pulmonary ventilation between normoxia and each level of hypoxia against ΔSaO2 (L min-1 %-1 kg-1). Similarly, HCR was calculated by differences in heart rate between normoxia and each level of hypoxia against ΔSaO2 (beats min-1 %-1). RESULTS: [Formula: see text]O2peak significantly decreased in hypoxia by 21% on average (P < 0.001). HVR was not associated with changes in [Formula: see text]O2peak. ΔSaO2 from normoxia to 18% or 15% O2 and HCR between normoxia and 12% O2 were associated with changes in [Formula: see text]O2peak (P < 0.05, respectively). The most optimal model using multiple linear regression analysis found that ΔHCR at 12% O2 and ΔSaO2 at 15% O2 were explanatory variables (adjusted R2 = 0.580, P = 0.02). CONCLUSION: These results suggest that arterial desaturation at moderate hypoxia and heart rate responses at severe hypoxia may account for hypoxic-induced declines in peak aerobic capacity, but ventilatory responses may be unrelated.


Asunto(s)
Hipoxia , Consumo de Oxígeno , Masculino , Humanos , Consumo de Oxígeno/fisiología , Ventilación Pulmonar , Frecuencia Cardíaca , Oxígeno
15.
Curr Res Physiol ; 5: 389-398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193515

RESUMEN

Purpose: This study investigated the effects of 1400 mL intake of alkaline electrolyzed water (AEW) or purified water (PW) into which carbohydrate-electrolyte (CE) was dissolved on improving physiological responses during exercise under heat stress. Methods: This double-blinded, crossover randomized controlled trial included 10 male participants who completed two exercise trials in a hot environment (35 °C, ambient temperature, and 50% relative humidity) after consuming CE-dissolved PW (P-CE) or CE-dissolved AEW (A-CE). The exercise trial consisted of running for 30 min on a treadmill (at an intensity corresponding to 65% of heart rate reserve adjusted for heat stress conditions) and repeated sprint cycling (10 × 7-s maximal sprint cycling), with a 35-min rest interval between the two exercises, followed by a 30-min post-exercise recovery period. Before and after running, and after cycling, the participants drank P-CE (hydrogen concentration of 0 ppm, pH 3.8) or A-CE (0.3 ppm, pH 4.1). Blood samples were obtained before, during (rest interval between running and cycling), and post-exercise. Results: Repeated sprint performance and oxidative stress response did not differ between the P-CE and A-CE trials. A-CE consumption significantly attenuated the increase in blood lactate concentration during the running exercise but not during repeated sprint cycling under heat stress conditions. Conclusion: Our findings suggested that A-CE did not significantly affect repeated sprint performance; however, the attenuated elevation in blood lactate by A-CE ingestion implies a partial enhancement of endurance performance during submaximal exercise under heat stress.

16.
Biochim Biophys Acta Gen Subj ; 1866(2): 130048, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728329

RESUMEN

Human skeletal muscle fiber is heterogenous due to its diversity of slow- and fast-twitch fibers. In human, slow-twitched fiber gene expression is correlated to MOTS-c, a mitochondria-derived peptide that has been characterized as an exercise mimetic. Within the MOTS-c open reading frame, there is an East Asian-specific m.1382A>C polymorphism (rs111033358) that changes the 14th amino acid of MOTS-c (i.e., K14Q), a variant of MOTS-c that has less biological activity. Here, we examined the influence of the m.1382A>C polymorphism causing MOTS-c K14Q on skeletal muscle fiber composition and physical performance. The myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx) as an indicator of muscle fiber composition were assessed in 211 Japanese healthy individuals (102 men and 109 women). Muscular strength was measured in 86 physically active young Japanese men by using an isokinetic dynamometer. The allele frequency of the m.1382A>C polymorphism was assessed in 721 Japanese athletes and 873 ethnicity-matched controls. The m.1382A>C polymorphism genotype was analyzed by TaqMan SNP Genotyping Assay. Individuals with the C allele of the m.1382A>C exhibited a higher proportion of MHC-IIx, an index of fast-twitched fiber, than the A allele carriers. Men with the C allele of m.1382A>C exhibited significantly higher peak torques of leg flexion and extension. Furthermore, the C allele frequency was higher in the order of sprint/power athletes (6.5%), controls (5.1%), and endurance athletes (2.9%). Additionally, young male mice were injected with the MOTS-c neutralizing antibody once a week for four weeks to mimic the C allele of the m.1382A>C and assessed for protein expression levels of MHC-fast and MHC-slow. Mice injected with MOTS-c neutralizing antibody showed a higher expression of MHC-fast than the control mice. These results suggest that the C allele of the East Asian-specific m.1382A>C polymorphism leads to the MOTS-c K14Q contributes to the sprint/power performance through regulating skeletal muscle fiber composition.


Asunto(s)
ADN Mitocondrial
17.
Percept Mot Skills ; 128(4): 1747-1764, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34078198

RESUMEN

Listening to music during active recovery between exercise bouts has been found to help maintain high levels of exercise performance; however, the effect of listening to music alone with no exercise while resting passively has not been elucidated. We examined whether listening to music during static (passive) recovery affects subsequent repeated sprint performances and/or psychological and physiological responses in healthy young males. Twelve healthy young male athletes completed two consecutive sets of 7 × 7 second maximal cycling sprints with a 30-second rest interval between the sprints. During a 15-minute interval between the sets, the participants rested passively while listening to fast-tempo (Fast, 130 bpm), slow-tempo (Slow, 70 bpm) music, or no music (Con). We assessed affective valence and arousal using the Affect Grid. The valence and arousal scores immediately after listening to fast-tempo music were significantly higher than those in the no music condition. Mean and peak power outputs during the second set after listening to fast-tempo music were significantly higher compared to those after the Slow and Con conditions (both adjusted p < .05). Moreover, the changes in exercise performances between the first and second set were significantly associated with changes in the arousal score induced by the music conditions, but not with changes in the valence score. These results suggested that listening to fast-tempo songs during passive recovery between the exercises improved subsequent repeated sprint cycling performance in physically active males. This type of rapid exercise recovery might be useful for competitive athletes, such as judo, track and fields, and swimming races.


Asunto(s)
Música , Nivel de Alerta , Percepción Auditiva , Ejercicio Físico , Humanos , Masculino , Descanso
18.
Physiol Behav ; 237: 113431, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887321

RESUMEN

In the workplace, sit-stand workstations are being installed to reduce excessive sitting time and the consequent risk factors for cardiovascular ailments (e.g., postprandial hyperglycemia). However, a prolonged standing posture also has detrimental effects in terms of musculoskeletal symptoms and work efficiency. We thus investigated whether alternating between a sitting and standing work posture improves postprandial glucose response and computer task performance. Nine healthy young males completed 4 × 20-min computer tasks in the early afternoon (i.e., 30 min after eating lunch) under three different work conditions, had no change in posture (only sitting=the control trial, CON), and engaged in two styles of alternating between sitting and standing every 20 min (sitting â†’ standing â†’ sitting â†’ standing, SIT-STAND; standing â†’ sitting â†’ standing â†’ sitting, STAND-SIT). For the computer tasks, all participants had to subtract a two-digit number from a four-digit number and to input the answer in the answer column on the computer. Task performance was evaluated as the number of achievements and accuracy rate every 20 min. Blood glucose concentration was assessed before, immediately after, 30 min, 52 min, 74 min, 96 min, and 118 min after eating lunch. The number of achievements and accuracy rate did not differ among the three trials. The total area under the curve (AUC) for blood glucose concentration was significantly lower in the SIT-STAND and STAND-SIT trials compared with CON, whereas no significant difference was observed between the SIT-STAND and STAND-SIT trials. In conclusion, alternating between a sitting and standing work posture attenuated postprandial blood glucose accumulation without reducing task performance, irrespective of the order of changes in work posture.


Asunto(s)
Glucosa , Análisis y Desempeño de Tareas , Computadores , Humanos , Masculino , Postura , Lugar de Trabajo
19.
High Alt Med Biol ; 22(2): 201-208, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33599547

RESUMEN

Takezawa, Toshihiro, Shohei Dobashi, and Katsuhiro Koyama. Cardiorespiratory response and power output during submaximal exercise in normobaric versus hypobaric hypoxia: a pilot study using a specific chamber that controls environmental factors. High Alt Med Biol. 22: 201-208, 2021. Background: Many previous studies have examined hypoxia-induced physiological responses using various conditions, e.g., artificially reduced atmospheric oxygen concentration [normobaric hypoxia (NH) condition] or low barometric pressure at a mountain [hypobaric hypoxia (HH) condition]. However, when comparing the results from these previous studies conducted in artificial NH and HH including real high altitude, we must consider the possibility that environmental factors, such as temperature, humidity, and fraction of inspired carbon dioxide, might affect the physiological responses. Therefore, we examined cardiorespiratory responses and exercise performances during low- to high-intensity exercise at a fixed heart rate (HR) in both NH and HH using a specific chamber where atmospheric oxygen concentration and barometric pressure as well as the abovementioned environmental factors were precisely controlled. Methods: Ten well-trained university students (eight males and two females) performed the exercise test consisting of two 20-minute submaximal pedaling at the intensity corresponding to 50% (low) and 70% (high) of their HR reserve, under three conditions [NH (fraction of inspired oxygen, 0.135; barometric pressure, 754 mmHg), HH (fraction of inspired oxygen, 0.209; barometric pressure, 504 mmHg), and normobaric normoxia (NN; fraction of inspired oxygen, 0.209; barometric pressure, 754 mmHg)]. Peripheral oxygen saturation (SpO2) to estimate arterial oxygen saturation and partial pressure of end-tidal carbon dioxide (PETCO2) were monitored throughout the experiment. Results: SpO2, PETCO2, and power output at fixed HRs (i.e., pedaling efficiency) in NH and HH were all significantly lower than those in NN. Moreover, high-intensity exercise in HH induced greater decreases in SpO2 and power output than did high-intensity exercise in NH (NH vs. HH; SpO2, 78.2% ± 5.0% vs. 75.1% ± 7.1%; power output, 120.7 ± 24.9 W vs. 112.4 ± 23.2 W, both p < 0.05). However, high-intensity exercise in HH induced greater increases in PETCO2 than did high-intensity exercise in NH (NH vs. HH; 54.2 ± 5.9 mmHg vs. 57.2 ± 3.4 mmHg, p < 0.01). Conclusions: These results suggest that physiological responses and power output at a fixed HR during hypoxic exposure might depend on the method used to generate the hypoxic condition.


Asunto(s)
Ejercicio Físico , Hipoxia , Altitud , Presión Atmosférica , Femenino , Humanos , Masculino , Oxígeno , Consumo de Oxígeno , Proyectos Piloto
20.
Med Gas Res ; 10(1): 21-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189665

RESUMEN

Repeated sprint exercise can interfere with intramuscular redox balance and cause systemic oxidative stress and muscle damage. There is growing evidence that molecular hydrogen counteracts oxidative and/or inflammatory responses. Therefore, we investigated the effects of molecular hydrogen-rich water (HW) on muscle performance and oxidative stress markers induced by strenuous exercise. A single-blind, crossover, randomized controlled trial has been designed. Eight male volunteers completed two 3-day consecutive exercise tests under two conditions: HW and placebo water (PW). The exercise test included a countermovement jump, maximal voluntary isometric contraction of knee extensors, and sprint cycling. The sprint cycling exercise was comprised three repetitions of 10-second maximal pedaling against a resistance of 7.5% body mass and 110-second active rest (no-load pedaling). Before and after the exercise test, participants drank the 500 mL of HW (5.14 ± 0.03 ppm in H2 concentration) or PW (0.00 ± 0.00 ppm). At 7 hours before the first exercise test (Day 1), as baseline, and 16 hours after the exercise test on each day, blood samples were obtained. Exercise performances in both conditions were not significantly different over 3 consecutive days. In PW trial, relative changes in biological antioxidant potential/diacron-reactive oxygen metabolites, as an index of systemic antioxidant potential, from baseline gradually decreased as the day passed. However, HW suppressed the reduction in biological antioxidant potential/diacron-reactive oxygen metabolites observed in PW. Drinking HW contributed to the maintenance of the redox status during consecutive days of strenuous exercise and might help prevent accumulative muscular fatigue. The study was approved by the Human Research Ethics Committee of the University of Yamanashi, Japan (approval No. H26-008) on December 17, 2014.


Asunto(s)
Antioxidantes/metabolismo , Sangre/efectos de los fármacos , Sangre/metabolismo , Entrenamiento de Intervalos de Alta Intensidad/efectos adversos , Hidrógeno/química , Agua/química , Agua/farmacología , Adulto , Biomarcadores/metabolismo , Humanos , Masculino , Músculos/efectos de los fármacos , Músculos/fisiología , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA