Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 15(4): 699-708, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30624445

RESUMEN

The present study was conducted to investigate the effects of the strong van der Waals interaction and sterol skeleton of surfactants on their interfacial rheological behaviors by comparing the interfacial properties of sodium cholesteryl glycylglycine (Chol-GG-Na) and sodium lauryl glycylglycine (C12-GG-Na) at the oil-aqueous interface. The interfacial dilational rheological experiment results indicate a significant increase in the interfacial activity and intermolecular interaction with the introduction of the cholesteryl group. Therefore, a compact interfacial layer with a remarkably high dilational modulus was obtained with the adsorption of Chol-GG-Na. The cholesteryl group also has a significant impact on the dynamic processes such as it slows down the motion of the molecules due to which the diffusion exchange between the bulk and the interface decreases. Besides, the rigid skeleton makes rearrangement and conformation adjustment difficult. These impacts become more pronounced when the adsorption layer approaches a close and ordered arrangement, which has been confirmed by the relaxation measurements. The reported results provide a theoretical foundation for the potential applications of cholesteryl-based surfactants in the food, pharmaceutical, cosmetic and petroleum industries.


Asunto(s)
Colesterol/química , Glicilglicina/química , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Colesterol/análogos & derivados , Difusión , Tensión Superficial , Tensoactivos/química
2.
Sci Total Environ ; 872: 162049, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36804984

RESUMEN

Few studies have focused on the growth, soil quality and sustainability of medicinal plants under different soil conditions. In this study, the spatial heterogeneity of soil physical and chemical properties, the diversity of rhizosphere soil microbial community structure, and the characteristics of growth of the wild and cultivated medicinal plant, Siberian fritillary (Fritillaria pallidiflora Schrek) were analyzed, and the soil quality and ecosystem sustainability were comprehensively evaluated. The results showed that there was significant spatial variability of soil nutrients in the different habitats. Nitrate nitrogen (NO3-N) was strongly variable, while those of the soil organic carbon (SOC) and available phosphorus (AP) were moderately variable. There was little variability among the soil available potassium (AK), electrical conductivity (EC), pH and ammonium nitrogen (NH4-N). Inverse Distance Weighting spatial interpolation showed that SOC, NO3-N, NH4-H and EC were highly distributed in the southeastern part of the wild area, and the soil was more acidic in the original habitat than in the planting habitat. There was little AK and AP in the native habitat, and there was a high content in the planting habitat. Simultaneously, the soil microbial communities of the two soils also differed. The wild-type soil showed a "fungal" type, while the planted soil showed a "bacterial" type. Pathogenic bacteria were among the primary microflora in the planting area. In general, it is difficult to maintain the sustainable development and geo-herbalism of F. pallidiflora in today's cultivation mode because of the significant differences in soil nature, spatial heterogeneity and microbial community structure for the growth of F. pallidiflora. Therefore, future planting should focus on transforming it from intensive to mountain forest planting. This is highly significant for improving the planting efficiency of F. pallidiflora, protecting their geo-herbalism and germplasm resources, and maintaining the stability and sustainable development of the ecosystem.


Asunto(s)
Fritillaria , Microbiota , Plantas Medicinales , Suelo/química , Fritillaria/química , Carbono , Bacterias , Nitrógeno/análisis , Microbiología del Suelo
3.
Front Microbiol ; 13: 960594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051766

RESUMEN

In the Gurbantunggut Desert of northwest China, the main habitat of Rhombomys opimus (great gerbil) is under the thickets of Haloxylon ammodendron, the main construction species. In the long-term coexistence, continuous gerbil activities (burrowing, defecating, and gnawing) limited the growth of H. ammodendron, affected the root microenvironment under the H. ammodendron forest, and weakened the desert ecosystem. However, there is a lack of general understanding about the response of desert soil microhabitats to such gerbil disturbance. Accordingly, this study examined the effects of different intensities of gerbil disturbance (none, mild, moderate, or severe disturbances) on soil nutrients content and used high-throughput sequencing to explore the change in diversity and structure of microbial communities (bacteria and fungi) in H. ammodendron rhizosphere at different soil depths (0-20, 20-40, and 40-60 cm). In the arid desert ecosystem, compared with the soil fungal community, the alpha diversity of the soil bacterial community was significantly affected by gerbil disturbance. Meanwhile, both soil depth and gerbil disturbance significantly impacted the beta diversity and relative abundance of soil bacterial and fungal communities. In addition, gerbil disturbance significantly altered the soil characteristics affecting the distribution and composition of soil microbial communities in H. ammodendron rhizosphere, especially the soil bacterial community. This survey provides evidence that remold impact of gerbil disturbance on soil microenvironment of H. ammodendron rhizosphere in desert ecosystems in northwest China, which helps to further understand the potential correlations with changes in the microbial community at a regional scale.

4.
Ecol Evol ; 11(23): 17260-17272, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938506

RESUMEN

Nutrients form a link between herbivores and plant. This study explored the physiological and ecological response mechanism of Haloxylon ammodendron population to rodent disturbance in Gurbantunggut Desert from the perspective of nutrient cycle. Through field investigation, we quantified rodent disturbance intensity (DI) to H. ammodendron and analyzed the ecological response mechanism of H. ammodendron population to rodent disturbance from the perspective of plant and soil nutrient cycling and changes. The results indicated that moderate rodent DI (number of effective burrows = 3-6) was the maximum limit that can be tolerated by H. ammodendron; the threshold for optimal H. ammodendron response to rodent disturbance was mild (number of burrows = 1-3). Meanwhile, the rodent disturbance caused significant nutrient enrichment (e.g., organic carbon, available phosphorus, and available potassium) in the deeper soil (at 20-40 and 40-60 cm depth) and significantly reduced the soil total salt content (p < .05). Furthermore, as the DI increased, the branches of H. ammodendron showed significantly increased soluble total sugar, crude fiber, and total nitrogen contents (p < .05) but significantly decreased crude fat and crude protein contents (p < .05); these results are related to the nutritional target transfer strategy evolved by H. ammodendron for long-term resistance to rodent disturbance. The current study clarified the optimal disturbance model for mutually beneficial H. ammodendron-great gerbil relationship, on the basis of which the ecological response mechanism of H. ammodendron population to rodent disturbance in deserts was illustrated. The current study provides a scientific basis for the protection mechanisms of desert plants to rodent disturbance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA