Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 113(21): 217203, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479519

RESUMEN

SmFeO3 has attracted considerable attention very recently due to its reported multiferroic properties above room temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveal a clear sign for magneto-elastic coupling at the Néel-temperature of ∼675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned.

2.
Phys Rev Lett ; 108(11): 117001, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540499

RESUMEN

Magnetic correlations in superconducting LiFeAs were studied by elastic and by inelastic neutron-scattering experiments. There is no indication for static magnetic ordering, but inelastic correlations appear at the incommensurate wave vector (0.5±Î´,0.5-/+δ,0) with δ~0.07 slightly shifted from the commensurate ordering observed in other FeAs-based compounds. The incommensurate magnetic excitations respond to the opening of the superconducting gap by a transfer of spectral weight.

3.
Sci Rep ; 6: 25117, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117928

RESUMEN

We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2-xSrxCoO4.

4.
Nat Commun ; 5: 5731, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25534540

RESUMEN

The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

5.
Nat Commun ; 4: 2449, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24048465

RESUMEN

An hour-glass-shaped magnetic excitation spectrum appears to be a universal characteristic of the high-temperature superconducting cuprates. Fluctuating charge stripes or alternative band structure approaches are able to explain the origin of these spectra. Recently, an hour-glass spectrum has been observed in an insulating cobaltate, thus favouring the charge stripe scenario. Here we show that neither charge stripes nor band structure effects are responsible for the hour-glass dispersion in a cobaltate within the checkerboard charge-ordered regime of La(2-x)Sr(x)CoO(4). The search for charge stripe ordering reflections yields no evidence for charge stripes in La(1.6)Sr(0.4)CoO(4), which is supported by our phonon studies. With the observation of an hour-glass-shaped excitation spectrum in this stripeless insulating cobaltate, we provide experimental evidence that the hour-glass spectrum is neither necessarily connected to charge stripes nor to band structure effects, but instead, probably intimately coupled to frustration and arising chiral or non-collinear magnetic correlations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA