Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 19(5): 959-972, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633480

RESUMEN

In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (ß1 and ß2), whereas the homopolymer PBF exhibited a single ß-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.

2.
Polymers (Basel) ; 14(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35683967

RESUMEN

A series of poly(ester amide)s based on dimethyl furan 2,5-dicarboxylate (DMFDC), 1,3-propanediol (PDO), 1,6-hexylene glycol (HDO), and 1,3-diaminopropane (DAP) were synthesized via two-step melt polycondensation. The phase transition temperatures and structure of the polymers were studied by differential scanning calorimetry (DSC). The positron annihilation lifetime spectroscopy (PALS) measurement was carried out to investigate the free volume. In addition, the mechanical properties of two series of poly(ester amide)s were analyzed. The increase in the number of methylene groups in the polymer backbone resulted in a decrease in the values of the transition temperatures. Depending on the number of methylene groups and the content of the poly(propylene furanamide) (PPAF), both semi-crystalline and amorphous copolymers were obtained. The free volume value increased with a greater number of methylene groups in the polymer backbone. Moreover, with a lower number of methylene groups, the value of the Young modulus and stress at break increased.

3.
Materials (Basel) ; 10(12)2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29168749

RESUMEN

Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples.

4.
Materials (Basel) ; 9(7)2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-28773731

RESUMEN

It is generally believed that only intermolecular, elastically-effective crosslinks influence elastomer properties. The role of the intramolecular modifications of the polymer chains is marginalized. The aim of our study was the characterization of the structural parameters of cured elastomers, and determination of their influence on the behavior of the polymer network. For this purpose, styrene-butadiene rubbers (SBR), cured with various curatives, such as DCP, TMTD, TBzTD, Vulcuren®, DPG/S8, CBS/S8, MBTS/S8 and ZDT/S8, were investigated. In every series of samples a broad range of crosslink density was obtained, in addition to diverse crosslink structures, as determined by equilibrium swelling and thiol-amine analysis. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to study the glass transition process, and positron annihilation lifetime spectroscopy (PALS) to investigate the size of the free volumes. For all samples, the values of the glass transition temperature (Tg) increased with a rise in crosslink density. At the same time, the free volume size proportionally decreased. The changes in Tg and free volume size show significant differences between the series crosslinked with various curatives. These variations are explained on the basis of the curatives' structure effect. Furthermore, basic structure-property relationships are provided. They enable the prediction of the effect of curatives on the structural parameters of the network, and some of the resulting properties. It is proved that the applied techniques-DSC, DMA, and PALS-can serve to provide information about the modifications to the polymer chains. Moreover, on the basis of the obtained results and considering the diversified curatives available nowadays, the usability of "part per hundred rubber" (phr) unit is questioned.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA