Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 30(11): 1030-1044, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33856034

RESUMEN

Progressive degeneration of retinal ganglion cells (RGCs) is a major characteristic of glaucoma, whose underlying mechanisms are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal tension glaucoma (NTG), directly affecting RGCs without high intraocular pressure and causing severe glaucomatous symptoms in clinical settings. A systematic analysis of the NTG mouse model is crucial for better understanding of the underlying pathological mechanisms for glaucoma. To elucidate proteomic and biochemical pathway alterations during NTG development, we established an OPTN E50K mutant mouse model through CRISPR/Cas9. Retinal proteins from resulting mice exhibiting glaucomatous phenotypes were subject to tandem mass tag-labeled quantitative proteomics and then analyzed through bioinformatics methods to characterize the molecular and functional signatures of NTG. We identified 6364 quantitative proteins in our proteomic analysis. Bioinformatics analysis revealed that OPTN E50K mice experienced protein synthesis dysregulation, age-dependent energy defects and autophagy-lysosome pathway dysfunction. Certain biological features, including amyloid deposition, RNA splicing, microglia activation and reduction of crystallin production, were similar to Alzheimer's disease. Our study is the first to describe proteomic and biochemical pathway alterations in NTG pathogenesis during disease advancement. Several proteomic signatures overlapped with retinal changes found in the ad mice model, suggesting the presence of common mechanisms between age-related degenerative disorders, as well as prospective new targets for diagnostic and therapeutic strategies.


Asunto(s)
Proteínas de Ciclo Celular/genética , Glaucoma de Baja Tensión/genética , Proteínas de Transporte de Membrana/genética , Retina/metabolismo , Animales , Autofagia/genética , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Humanos , Glaucoma de Baja Tensión/metabolismo , Glaucoma de Baja Tensión/patología , Ratones , Mutación/genética , Fenotipo , Proteómica , Retina/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Factor de Transcripción TFIIIA
2.
ACS Appl Mater Interfaces ; 16(22): 28991-29002, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769310

RESUMEN

Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.


Asunto(s)
Carbono , Mitocondrias , Compuestos Organofosforados , Puntos Cuánticos , Compuestos Organofosforados/química , Carbono/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Puntos Cuánticos/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Células HeLa
3.
Int J Nanomedicine ; 19: 2265-2284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476273

RESUMEN

Introduction: Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods: Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results: CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1ß and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-ß. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion: CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.


Asunto(s)
Quitosano , Glaucoma , Daño por Reperfusión , Ratas , Animales , Ratones , Humanos , Microglía/patología , Quitosano/farmacología , Sirolimus/farmacología , Carbono/farmacología , Lipopolisacáridos/farmacología , Glaucoma/tratamiento farmacológico , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Autofagia , Citocinas/metabolismo , Agua , Daño por Reperfusión/tratamiento farmacológico
4.
Cell Death Dis ; 12(6): 613, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127652

RESUMEN

Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.


Asunto(s)
Células de la Médula Ósea/fisiología , Proteínas de Ciclo Celular/genética , Glaucoma de Baja Tensión/terapia , Proteínas de Transporte de Membrana/genética , Degeneración Retiniana/prevención & control , Envejecimiento/patología , Envejecimiento/fisiología , Sustitución de Aminoácidos/genética , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Glaucoma de Baja Tensión/genética , Glaucoma de Baja Tensión/metabolismo , Glaucoma de Baja Tensión/patología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroprotección/fisiología , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA