Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 78(5): 862-875.e8, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32348780

RESUMEN

Nuclear RNA interference (RNAi) pathways work together with histone modifications to regulate gene expression and enact an adaptive response to transposable RNA elements. In the germline, nuclear RNAi can lead to trans-generational epigenetic inheritance (TEI) of gene silencing. We identified and characterized a family of nuclear Argonaute-interacting proteins (ENRIs) that control the strength and target specificity of nuclear RNAi in C. elegans, ensuring faithful inheritance of epigenetic memories. ENRI-1/2 prevent misloading of the nuclear Argonaute NRDE-3 with small RNAs that normally effect maternal piRNAs, which prevents precocious nuclear translocation of NRDE-3 in the early embryo. Additionally, they are negative regulators of nuclear RNAi triggered from exogenous sources. Loss of ENRI-3, an unstable protein expressed mostly in the male germline, misdirects the RNAi response to transposable elements and impairs TEI. The ENRIs determine the potency and specificity of nuclear RNAi responses by gating small RNAs into specific nuclear Argonautes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Silenciador del Gen/fisiología , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Células Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Interferencia de ARN/fisiología , ARN Bicatenario/metabolismo , ARN Nuclear/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética
2.
Mol Cell ; 75(2): 340-356.e10, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31253575

RESUMEN

The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.


Asunto(s)
Carcinogénesis/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al Calcio/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , MicroARNs/biosíntesis , Conformación de Ácido Nucleico
3.
J Cell Sci ; 136(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732428

RESUMEN

Viruses use microRNAs (miRNAs) to impair the host antiviral response and facilitate viral infection by expressing their own miRNAs or co-opting cellular miRNAs. miRNAs inhibit translation initiation of their target mRNAs by recruiting the GIGYF2-4EHP (or EIF4E2) translation repressor complex to the mRNA 5'-cap structure. We recently reported that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-encoded non-structural protein 2 (NSP2) interacts with GIGYF2. This interaction is critical for blocking translation of the Ifnb1 mRNA that encodes the cytokine interferon ß, and thereby impairs the host antiviral response. However, it is not known whether NSP2 also affects miRNA-mediated silencing. Here, we demonstrate the pervasive augmentation of miRNA-mediated translational repression of cellular mRNAs by NSP2. We show that NSP2 interacts with argonaute 2 (AGO2), the core component of the miRNA-induced silencing complex (miRISC), via GIGYF2 and enhances the translational repression mediated by natural miRNA-binding sites in the 3' untranslated region of cellular mRNAs. Our data reveal an additional layer of the complex mechanism by which SARS-CoV-2 and likely other coronaviruses manipulate the host gene expression program by co-opting the host miRNA-mediated silencing machinery.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Antivirales
4.
Proc Natl Acad Sci U S A ; 119(32): e2204539119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878012

RESUMEN

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a mechanism by which the SARS-CoV-2 virus coopts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-ß. We reveal that the SARS-CoV-2 encoded nonstructural protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-ß production, which inhibits SARS-CoV-2 replication. Our findings reveal a target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Asunto(s)
COVID-19 , Proteínas Portadoras , Interferón Tipo I , Proteínas no Estructurales Virales , COVID-19/genética , Proteínas Portadoras/metabolismo , Línea Celular , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
5.
Nucleic Acids Res ; 50(16): 9397-9412, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35993810

RESUMEN

Precise maintenance of PTEN dosage is crucial for tumor suppression across a wide variety of cancers. Post-transcriptional regulation of Pten heavily relies on regulatory elements encoded by its 3'UTR. We previously reported the important diversity of 3'UTR isoforms of Pten mRNAs produced through alternative polyadenylation (APA). Here, we reveal the direct regulation of Pten APA by the mammalian cleavage factor I (CFIm) complex, which in turn contributes to PTEN protein dosage. CFIm consists of the UGUA-binding CFIm25 and APA regulatory subunits CFIm59 or CFIm68. Deep sequencing analyses of perturbed (KO and KD) cell lines uncovered the differential regulation of Pten APA by CFIm59 and CFIm68 and further revealed that their divergent functions have widespread impact for APA in transcriptomes. Differentially regulated genes include numerous factors within the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway that PTEN counter-regulates. We further reveal a stratification of APA dysregulation among a subset of PTEN-driven cancers, with recurrent alterations among PI3K/Akt pathway genes regulated by CFIm. Our results refine the transcriptome selectivity of the CFIm complex in APA regulation, and the breadth of its impact in PTEN-driven cancers.


Asunto(s)
Poliadenilación , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Regiones no Traducidas 3'/genética , Fosfatidilinositol 3-Quinasa/genética , Mamíferos/genética
6.
Nucleic Acids Res ; 49(9): 4803-4815, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33758928

RESUMEN

microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35-42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , MicroARNs/genética , Biosíntesis de Proteínas , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Genes Letales , MicroARNs/metabolismo , Dominios Proteicos , Proteómica , Complejo Silenciador Inducido por ARN/metabolismo
9.
Nucleic Acids Res ; 46(19): 10340-10352, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30053103

RESUMEN

Fine regulation of the phosphatase and tensin homologue (PTEN) phosphatase dosage is critical for homeostasis and tumour suppression. The 3'-untranslated region (3'-UTR) of Pten mRNA was extensively linked to post-transcriptional regulation by microRNAs (miRNAs). In spite of this critical regulatory role, alternative 3'-UTRs of Pten have not been systematically characterized. Here, we reveal an important diversity of Pten mRNA isoforms generated by alternative polyadenylation sites. Several 3'-UTRs are co-expressed and their relative expression is dynamically regulated. In spite of encoding multiple validated miRNA-binding sites, longer isoforms are largely refractory to miRNA-mediated silencing, are more stable and contribute to the bulk of PTEN protein and signalling functions. Taken together, our results warrant a mechanistic re-interpretation of the post-transcriptional mechanisms involving Pten mRNAs and raise concerns on how miRNA-binding sites are being validated.


Asunto(s)
MicroARNs/genética , Fosfohidrolasa PTEN/genética , Poliadenilación/genética , Isoformas de ARN/genética , Regiones no Traducidas 3'/genética , Animales , Homeostasis , Ratones , Células 3T3 NIH , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
10.
Proc Natl Acad Sci U S A ; 114(21): 5425-5430, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28487484

RESUMEN

MicroRNAs (miRNAs) play critical roles in a broad variety of biological processes by inhibiting translation initiation and by destabilizing target mRNAs. The CCR4-NOT complex effects miRNA-mediated silencing, at least in part through interactions with 4E-T (eIF4E transporter) protein, but the precise mechanism is unknown. Here we show that the cap-binding eIF4E-homologous protein 4EHP is an integral component of the miRNA-mediated silencing machinery. We demonstrate that the cap-binding activity of 4EHP contributes to the translational silencing by miRNAs through the CCR4-NOT complex. Our results show that 4EHP competes with eIF4E for binding to 4E-T, and this interaction increases the affinity of 4EHP for the cap. We propose a model wherein the 4E-T/4EHP interaction engenders a closed-loop mRNA conformation that blocks translational initiation of miRNA targets.


Asunto(s)
MicroARNs/metabolismo , Proteínas de Unión a Caperuzas de ARN/metabolismo , Interferencia de ARN , Complejo Silenciador Inducido por ARN/metabolismo , Factor 4E Eucariótico de Iniciación , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo
11.
Nucleic Acids Res ; 45(12): 7212-7225, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28482037

RESUMEN

Although strong evidence supports the importance of their cooperative interactions, microRNA (miRNA)-binding sites are still largely investigated as functionally independent regulatory units. Here, a survey of alternative 3΄UTR isoforms implicates a non-canonical seedless site in cooperative miRNA-mediated silencing. While required for target mRNA deadenylation and silencing, this site is not sufficient on its own to physically recruit miRISC. Instead, it relies on facilitating interactions with a nearby canonical seed-pairing site to recruit the Argonaute complexes. We further show that cooperation between miRNA target sites is necessary for silencing in vivo in the C. elegans embryo, and for the recruitment of the Ccr4-Not effector complex. Using a structural model of cooperating miRISCs, we identified allosteric determinants of cooperative miRNA-mediated silencing that are required for both embryonic and larval miRNA functions. Our results delineate multiple cooperative mechanisms in miRNA-mediated silencing and further support the consideration of target site cooperation as a fundamental characteristic of miRNA function.


Asunto(s)
Caenorhabditis elegans/genética , Silenciador del Gen , MicroARNs/genética , Complejo Silenciador Inducido por ARN/química , Factores de Transcripción/química , Regiones no Traducidas 3' , Empalme Alternativo , Animales , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Embrión no Mamífero , MicroARNs/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Nucleic Acids Res ; 45(4): 2081-2098, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28204614

RESUMEN

MicroRNAs (miRNAs) impinge on the translation and stability of their target mRNAs, and play key roles in development, homeostasis and disease. The gene regulation mechanisms they instigate are largely mediated through the CCR4­NOT deadenylase complex, but the molecular events that occur on target mRNAs are poorly resolved. We observed a broad convergence of interactions of germ granule and P body mRNP components on AIN-1/GW182 and NTL-1/CNOT1 in Caenorhabditis elegans embryos. We show that the miRISC progressively matures on the target mRNA from a scanning form into an effector mRNP particle by sequentially recruiting the CCR4­NOT complex, decapping and decay, or germ granule proteins. Finally, we implicate intrinsically disordered proteins, key components in mRNP architectures, in the embryonic function of lsy-6 miRNA. Our findings define dynamic steps of effector mRNP assembly in miRNA-mediated silencing, and identify a functional continuum between germ granules and P bodies in the C. elegans embryo.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Interferencia de ARN , Ribonucleoproteínas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Ribonucleasas/metabolismo
13.
Mol Cell ; 40(4): 558-70, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095586

RESUMEN

To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.


Asunto(s)
Regiones no Traducidas 3'/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Embrión no Mamífero/metabolismo , MicroARNs/genética , Procesamiento de Término de ARN 3' , Animales , Secuencia de Bases , Sistema Libre de Células , Femenino , Silenciador del Gen , MicroARNs/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteómica , Complejo Silenciador Inducido por ARN/metabolismo , Cigoto/metabolismo
14.
Nucleic Acids Res ; 44(12): 5924-35, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27095199

RESUMEN

Cytoplasmic poly(A)-binding proteins (PABPs) link mRNA 3' termini to translation initiation factors, but they also play key roles in mRNA regulation and decay. Reports from mice, zebrafish and Drosophila further involved PABPs in microRNA (miRNA)-mediated silencing, but through seemingly distinct mechanisms. Here, we implicate the two Caenorhabditis elegans PABPs (PAB-1 and PAB-2) in miRNA-mediated silencing, and elucidate their mechanisms of action using concerted genetics, protein interaction analyses, and cell-free assays. We find that C. elegans PABPs are required for miRNA-mediated silencing in embryonic and larval developmental stages, where they act through a multi-faceted mechanism. Depletion of PAB-1 and PAB-2 results in loss of both poly(A)-dependent and -independent translational silencing. PABPs accelerate miRNA-mediated deadenylation, but this contribution can be modulated by 3'UTR sequences. While greater distances with the poly(A) tail exacerbate dependency on PABP for deadenylation, more potent miRNA-binding sites partially suppress this effect. Our results refine the roles of PABPs in miRNA-mediated silencing and support a model wherein they enable miRNA-binding sites by looping the 3'UTR poly(A) tail to the bound miRISC and deadenylase.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Larva/genética , MicroARNs/genética , Poli A/genética , Proteína II de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/genética , Regiones no Traducidas 3' , Adenosina Monofosfato/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero , Silenciador del Gen , Larva/crecimiento & desarrollo , Larva/metabolismo , MicroARNs/metabolismo , Poli A/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteína II de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo
15.
PLoS Genet ; 11(10): e1005520, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26439621

RESUMEN

Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans), which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN). FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD) tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2). Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Glucógeno/metabolismo , Osmorregulación/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Glucógeno/genética , Glucógeno Fosforilasa/genética , Glucógeno Sintasa/genética , Humanos , Ratones , Mutación , Concentración Osmolar
16.
Mol Cell ; 35(6): 868-80, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19716330

RESUMEN

MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas , Ascitis/genética , Ascitis/metabolismo , Autoantígenos/metabolismo , Sitios de Unión , Carcinoma Krebs 2/genética , Carcinoma Krebs 2/metabolismo , Sistema Libre de Células , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Exorribonucleasas , Células HeLa , Humanos , Cinética , Ratones , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas/genética , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Receptores CCR4/metabolismo , Proteínas Represoras , Ribonucleasas , Transfección
17.
Nucleic Acids Res ; 43(15): 7556-65, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26227970

RESUMEN

Several authors have suggested or inferred that modest changes in microRNA expression can potentiate or impinge on their capacity to mediate gene repression, and that doing so could play a significant role in diseases. Such interpretations are based on several assumptions, namely: (i) changes in microRNA expression correlate with changes in the availability of mature, functional miRISC, (ii) changes in microRNA expression can significantly alter the stoichiometry of miRISC populations with their cognate targets, (iii) and this, in turn, can result in changes in miRISC silencing output. Here, we experimentally challenge those assumptions by quantifying and altering the availability of miRISC across several families of microRNAs. Doing so revealed a surprising fragmentation in the miRISC functional pool, striking differences in the availability of miRNA families and saturability of miRNA-mediated silencing. Furthermore, we provide direct experimental evidence that only a limited subset of miRNAs, defined by a conjuncture of expression threshold, miRISC availability and low target site abundance, is susceptible to competitive effects through microRNA-binding sites.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Sitios de Unión , Células HEK293 , Humanos
18.
RNA ; 20(9): 1398-409, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25035296

RESUMEN

MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4-NOT deadenylase complex followed by the removal of the 5' cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4-NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6-CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ARN Helicasas DEAD-box/genética , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Homología de Secuencia de Aminoácido
19.
Proc Natl Acad Sci U S A ; 107(8): 3582-7, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133583

RESUMEN

Argonaute (AGO) proteins interact with distinct classes of small RNAs to direct multiple regulatory outcomes. In many organisms, including plants, fungi, and nematodes, cellular RNA-dependent RNA polymerases (RdRPs) use AGO targets as templates for amplification of silencing signals. Here, we show that distinct RdRPs function sequentially to produce small RNAs that target endogenous loci in Caenorhabditis elegans. We show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are required for the biogenesis of 26-nt small RNAs with a 5' guanine (26G-RNAs) and that 26G-RNAs engage the Piwi-clade AGO, ERGO-1. Our findings support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific AGOs (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a nonrandom distribution in the genome and appear to include many gene duplications, suggesting that this pathway may control overexpression resulting from gene expansion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/biosíntesis , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endorribonucleasas/metabolismo , Silenciador del Gen , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Ribonucleasa III , Transcripción Genética
20.
RNA ; 16(3): 585-97, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20075165

RESUMEN

Transport of mRNA is an efficient mechanism to target proteins to specific regions of a cell. Although it is well documented that mRNAs are transported in ribonucleoprotein (RNP) complexes, several of the mechanisms involved in complex formation and localization are poorly understood. Staufen (Stau) 1, a double-stranded RNA-binding protein, is a well accepted marker of mRNA transport complexes. In this manuscript, we provide evidence that Stau1 self-associates in live cells using immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays. The double-stranded RNA-binding domains dsRBD3 and dsRBD4 contributed about half of the signal, suggesting that Stau1 RNA-binding activity is involved in Stau1 self-association. Protein-protein interaction also occurred, via dsRBD5 and dsRBD2, as shown by in vitro pull-down, yeast two-hybrid, and BRET assays in live cells. Interestingly, Stau1 self-association contributes to the formation of oligomeric complexes as evidenced by the coexpression of split Renilla luciferase halves covalently linked to Stau1 in a protein complementation assay (PCA) combined with a BRET assay with Stau1-YFP. Moreover, we showed that these higher-order Stau1-containing complexes carry RNAs when the RNA stain SYTO 14 was used as the energy acceptor in the PCA/BRET assay. The oligomeric composition of Stau1-containing complexes and the presence of specific mRNAs have been confirmed by biochemical approaches involving two successive immunoprecipitations of Stau1-tagged molecules followed by qRT-PCR amplification. Altogether, these results indicate that Stau1 self-associates in mRNPs via its multiple functional domains that can select mRNAs to be transported and establish protein-protein interaction.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Transporte de ARN , Proteínas de Unión al ARN/metabolismo , Línea Celular , Humanos , Inmunoprecipitación , Mediciones Luminiscentes , Multimerización de Proteína , Ribonucleoproteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA