Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35241971

RESUMEN

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

2.
Sensors (Basel) ; 22(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35890836

RESUMEN

Historical temperature records reveal that the boreal forest has been subjected to a significant lengthening of the thermal growing season since the middle of the last century, and climate models predict that this lengthening will continue in the future. Nevertheless, the potential phenological response of trees to changes in growing season length remains relatively undocumented, particularly for evergreen boreal tree species growing in cold environments. Here, we used the recently defined zero growth (ZG) concept to extract and characterize the metrics of seasonal radial growth dynamics for 12 balsam fir trees subjected to a 12-year soil warming experiment using high resolution radius dendrometer measurements. The ZG concept provides an accurate determination of growth seasonality (onset, cessation, duration, growth rates, and total growth) for these slow-growing trees characterized by significant shrinkage in tree diameter due to dehydration in the winter. Our analysis revealed that, on average, growth onset starts at day 152 ± 7 (±1 SE, 31 May-1 June) and ceases at day 244 ± 27 (31 August-1 September), for a growing season duration of about 3 months (93 ± 26 days) over a 12-year period. Growing season duration is mainly determined by growth cessation, while growth onset varies little between years. A large part (80%) of the total growth occurs in the first 50 days of the growing season. Given the dynamics of growth, early growth cessation (shorter growing season) results in a higher average seasonal growth rate, meaning that longer growing seasons are not necessarily associated with greater tree growth. Soil warming induces earlier growth cessation, but increases the mean tree growth rate by 18.1% and the total annual growth by 9.1%, on average, as compared to the control trees. Our results suggest that a higher soil temperature for warmed trees contributes to providing better growth conditions and higher growth rates in the early growing season, when the soil temperature is low and the soil water content is elevated because of snowmelt. Attaining a critical soil temperature earlier, coupled with lower soil water content, may have contributed to the earlier growth cessation and shorter growing season of warmed trees.


Asunto(s)
Abies , Suelo , Radio (Anatomía)/química , Estaciones del Año , Temperatura , Árboles , Agua/análisis
3.
Glob Chang Biol ; 24(6): 2339-2351, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29460369

RESUMEN

Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.


Asunto(s)
Cambio Climático , Sequías , Bosques , Monitoreo del Ambiente , América del Norte , Estaciones del Año , Suelo , Temperatura , Árboles/crecimiento & desarrollo , Agua
4.
Environ Monit Assess ; 186(12): 8191-202, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25139238

RESUMEN

The projected increase in atmospheric N deposition and air/soil temperature will likely affect soil nutrient dynamics in boreal ecosystems. The potential effects of these changes on soil ion fluxes were studied in a mature balsam fir stand (Abies balsamea [L.] Mill) in Quebec, Canada that was subjected to 3 years of experimentally increased soil temperature (+4 °C) and increased inorganic N concentration in artificial precipitation (three times the current N concentrations using NH4NO3). Soil element fluxes (NO3, NH4, PO4, K, Ca, Mg, SO4, Al, and Fe) in the organic and upper mineral horizons were monitored using buried ion-exchange membranes (PRS™ probes). While N additions did not affect soil element fluxes, 3 years of soil warming increased the cumulative fluxes of K, Mg, and SO4 in the forest floor by 43, 44, and 79 %, respectively, and Mg, SO4, and Al in the mineral horizon by 29, 66, and 23 %, respectively. We attribute these changes to increased rates of soil organic matter decomposition. Significant interactions of the heating treatment with time were observed for most elements although no clear seasonal patterns emerged. The increase in soil K and Mg in heated plots resulted in a significant but small K increase in balsam fir foliage while no change was observed for Mg. A 6-15 % decrease in foliar Ca content with soil warming could be related to the increase in soil-available Al in heated plots, as Al can interfere with the root uptake of Ca.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Nitrógeno/análisis , Contaminantes del Suelo/análisis , Canadá , Ecosistema , Monitoreo del Ambiente/métodos , Resinas de Intercambio Iónico/química , Suelo , Taiga , Temperatura , Árboles
5.
Sci Total Environ ; 946: 174387, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955275

RESUMEN

Northern temperate and boreal forests are large biomes playing crucial ecological and environmental roles, such as carbon sequestration. Despite being generally remote, these forests were exposed to anthropogenic nitrogen (N) deposition over the last two centuries and may still experience elevated N deposition as human activities expand towards high latitudes. However, the impacts of long-term high N deposition on these N-limited forest ecosystems remain unclear. For 18 years, we simulated N deposition by chronically adding ammonium nitrate at rates of 3 (LN treatment) and 10 (HN treatment) times the ambient N deposition estimated at the beginning of the experiment at a temperate sugar maple and a boreal balsam fir forest site, both located in northeastern America. LN and HN treatments corresponded respectively to addition of 26 kgN·ha-1·yr-1 and 85 kgN·ha-1·yr-1 at the temperate site and 17 kgN·ha-1·yr-1 and 57 kgN·ha-1·yr-1 at the boreal site. Between 2002 and 2018, soil solution was collected weekly during summer and concentrations of NO3-, NH4+, Ca2+ and pH were measured, totalling ~12,700-13,500 observations per variable on the study period. N treatments caused soil solution NO3-, NH4+ and Ca2+ concentrations to increase while reducing its pH. However, ion responses manifested through punctual high concentration events (predominantly on the HN plots) that were very rare and leached N quantity was extremely low at both sites. Therefore, N addition corresponding to 54 years (LN treatment) and 180 years (HN treatment) of accelerated ambient N deposition had overall small impacts on soil solution chemistry. Our results indicate an important N retention of northeastern American forests and an unexpected strong resilience of their soil solution chemistry to long-term simulated N deposition, potentially explained by the widespread N-limitation in high latitude ecosystems. This finding can help predict the future productivity of N-limited forests and improve forest management strategies in northeastern America.

6.
Sci Total Environ ; 853: 158240, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36075430

RESUMEN

The widespread increase of dissolved organic carbon (DOC) in northern hemisphere surface waters have been generally attributed to the recovery from acidic deposition and to climatic variations. The long-term responses of DOC to environmental drivers could be better predicted with a better understanding of the mechanisms taking place at the soil level given organic forest soils are the main site of DOC production in forested watersheds. Here, we assess the long-term variation (25 years) of DOC concentration in the solution leaching from the soil organic layer (DOCOL) of a temperate forest. Our results show that DOCOL increased by 32 % (p < 0.001) during the period of study while the lake outlet DOC concentration did not show any changes. Weekly and annual models based on a simple set of explicative variables including throughfall DOC, throughfall precipitation, temperature, litterfall amounts and organic layer leachate calcium concentration (CaOL, taken as a proxy for soil solution ionic strength) explain between 17 and 58 % of the variance in DOCOL depending on model structures and temporal scales. Throughfall DOC and CaOL were both positively related to DOCOL in the models describing its variations at the weekly and annual scale. Temperature was positively correlated to DOCOL, probably due to increased microbial activity, while precipitation had a negative effect on DOCOL (only at the weekly scale), most probably due to a dilution effect. Contrary to our expectations, annual litterfall inputs had no impacts on annual DOCOL variations. Overall, the results shows that DOCOL control is a complex process implicating a set of environmental factors that are acting in different ways while no single variable alone can explain a large part of the variation in both, weekly or annual DOCOL variations.


Asunto(s)
Materia Orgánica Disuelta , Suelo , Suelo/química , Carbono/química , Calcio , Bosques
7.
PeerJ ; 9: e11685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221741

RESUMEN

Texture strongly influences the soil's fundamental functions in forest ecosystems. In response to the growing demand for information on soil properties for environmental modeling, more and more studies have been conducted over the past decade to assess the spatial variability of soil properties on a regional to global scale. These investigations rely on the acquisition and compilation of numerous soil field records and on the development of statistical methods and technology. Here, we used random forest machine learning algorithms to model and map particle size composition in ecoforest polygons for the entire area of managed forests in the province of Quebec, Canada. We compiled archived laboratory analyses of 29,570 mineral soil samples (17,901 sites) and a set of 33 covariates, including 22 variables related to climate, five related to soil characteristics, three to spatial position or spatial context, two to relief and topography, and one to vegetation. After five repeats of 5-fold cross-validation, results show that models that include two functionally independent values regarding particle size composition explain 60%, 34%, and 78% of the variance in sand, silt and clay fractions, respectively, with mean absolute errors ranging from 4.0% for the clay fraction to 9.5% for the sand fraction. The most important model variables are those observed in the field and those interpreted from aerial photography regarding soil characteristics, followed by those regarding elevation and climate. Our results compare favorably with those of previous soil texture mapping studies for the same territory, in which particle size composition was modeled mainly from rasterized climatic and topographic covariates. The map we provide should meet the needs of provincial forest managers, as it is compatible with the ecoforest map that constitutes the basis of information for forest management in Quebec, Canada.

8.
Sci Total Environ ; 758: 143639, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248783

RESUMEN

Reduction in SO42- and NO3- atmospheric deposition in the past decades has improved surface water quality in several catchments but recent studies suggest an increasing influence of climate and dissolved organic carbon (DOC). Here, we report on long-term trends in climate variables, strong acid anions and base cations concentrations in precipitation and at the lake outlet (stream) of a boreal catchment in Québec, Canada, and assess the combined effects of these trends on stream chemistry. Annual SO42- and NO3- depositions respectively decreased by ~85% (from 23 to ~3 kg ha-1) and ~70% (from 18 to ~5 kg ha-1 yr-1) from 1981 to 2016. As a response, stream SO42- and Ca2+ concentrations decreased by 50% (from 3.9 to 1.9 mg L-1) and ~35% (from 2.4 to 1.5 mg L-1), respectively. Stream NO3- concentration decreased by ~89% (from 0.6 to 0.07 mg L-1) mainly due to the decline in NO3- deposition and possibly to increased vegetation N uptake. Unexpectedly, stream alkalinity decreased, likely due to the decline in Ca2+ concentration and to an increase in DOC concentration. Variations in stream pH and Na+ concentrations were best explained by climatic changes than by changes in acid deposition, likely reflecting the effect of climate change on chemical weathering in the region. In addition, the average daily temperature between May and September had a strong influence on stream Ca2+ concentration in the last two decades (negative relationship), suggesting an increasing vegetation nutrient uptake caused by improved growth conditions. Overall, decreased acidic deposition resulted in a general recovery of surface water although the parallel increase in DOC concentration prevented from an increase in water alkalinity. Our data also indicate an increasing influence of climate on water chemistry at the study site, probably mediated by increasing weathering rate and vegetation nutrient uptake.

9.
Sci Rep ; 9(1): 6832, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048703

RESUMEN

Tree rings are thought to be a powerful tool to reconstruct historical growth changes and have been widely used to assess tree responses to global warming. Demographic inferences suggest, however, that typical sampling procedures induce spurious trends in growth reconstructions. Here we use the world's largest single tree-ring dataset (283,536 trees from 136,621 sites) from Quebec, Canada, to assess to what extent growth reconstructions based on these - and thus any similar - data might be affected by this problem. Indeed, straightforward growth rate reconstructions based on these data suggest a six-fold increase in radial growth of black spruce (Picea mariana) from ~0.5 mm yr-1 in 1800 to ~2.5 mm yr-1 in 1990. While the strong correlation (R2 = 0.98) between this increase and that of atmospheric CO2 could suggest a causal relationship, we here unambiguously demonstrate that this growth trend is an artefact of sampling biases caused by the absence of old, fast-growing trees (cf. "slow-grower survivorship bias") and of young, slow-growing trees (cf. "big-tree selection bias") in the dataset. At the moment, we cannot envision how to remedy the issue of incomplete representation of cohorts in existing large-scale tree-ring datasets. Thus, innovation will be needed before such datasets can be used for growth rate reconstructions.


Asunto(s)
Artefactos , Bosques , Picea/crecimiento & desarrollo , Canadá , Dióxido de Carbono , Quebec
10.
Ecol Appl ; 18(7): 1642-51, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18839760

RESUMEN

The cycling of base cations (K, Ca, Mg, and Na) was investigated in a boreal balsam fir forest (the Lake Laflamme Watershed) between 1999 and 2005. Base cation budgets were calculated for the soil rooting zone that included atmospheric deposition and soil leaching losses, two scenarios of tree uptake (whole-tree and stem-only harvesting), and three scenarios of mineral weathering, leading to six different scenarios. In every scenario there was a net accumulation of Mg within the soil exchangeable reservoir, while Ca accumulated in four scenarios. Potassium was lost in five of the six scenarios. Contrary to Ca and Mg, immobilization of K within tree biomass (69 mol x ha(-1) x yr(-1)) was the main pathway of K losses from the soil exchangeable reservoir, being five times higher than losses via soil leaching (14 mol x ha(-1) x yr(-1)). The amounts of K contained within the aboveground biomass and the exchangeable soil reservoir were 3.3 kmol/ha and 4.2 kmol/ha, respectively. Whole-tree harvesting may thus remove 44% of the K that is readily available for cycling in the short term, making this forest sensitive to commercial forestry operations. Similar values of annual K uptake as well as a similar distribution of K between tree biomass and soil exchangeable reservoirs at 14 other coniferous sites, distributed throughout the boreal forest of Quebec, suggest that the Lake Laflamme Watershed results can be extrapolated to a much larger area. Stem-only harvesting, which would reduce K exports due to biomass removal by 60%, should be used for these types of forest.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura Forestal/métodos , Árboles/fisiología , Regiones Árticas , Atmósfera , Biomasa , Canadá , Monitoreo del Ambiente , Potasio/química , Suelo/análisis
11.
Nat Commun ; 9(1): 3213, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30097584

RESUMEN

Predicted increases in temperature and aridity across the boreal forest region have the potential to alter timber supply and carbon sequestration. Given the widely-observed variation in species sensitivity to climate, there is an urgent need to develop species-specific predictive models that can account for local conditions. Here, we matched the growth of 270,000 trees across a 761,100 km2 region with detailed site-level data to quantify the growth responses of the seven most common boreal tree species in Eastern Canada to changes in climate. Accounting for spatially-explicit species-specific responses, we find that while 2 °C of warming may increase overall forest productivity by 13 ± 3% (mean ± SE) in the absence of disturbance, additional warming could reverse this trend and lead to substantial declines exacerbated by reductions in water availability. Our results confirm the transitory nature of warming-induced growth benefits in the boreal forest and highlight the vulnerability of the ecosystem to excess warming and drying.


Asunto(s)
Cambio Climático , Árboles/crecimiento & desarrollo , Modelos Biológicos , Quebec , Especificidad de la Especie , Temperatura , Agua
12.
PLoS One ; 12(12): e0189444, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281697

RESUMEN

Increasing access to extensively replicated and broadly distributed tree-ring collections has led to a greater use of these large data sets to investigate climate forcing on tree growth. However, the number of chronologies added to large accessible databases is declining and few are updated, while chronologies are often sparsely distributed and are more representative of marginal growing environments. On the other hand, National Forest Inventories (NFI), although poorly replicated at the plot level as compared to classic dendrochronological sampling, contain a large amount of tree-ring data with high spatial density designed to be spatially representative of the forest cover. We propose an a posteriori approach to validating tree-ring measurements and dating, selecting individual tree-ring width time series, and building average chronologies at various spatial scales based on an extensive collection of ring width measurements of nearly 94,000 black spruce trees distributed over a wide area and collected as part of the NFI in the province of Quebec, Canada. Our results show that reliable signals may be derived at various spatial scales (from 37 to 583,000 km2) from NFI increment core samples. Signals from independently built chronologies are spatially coherent with each other and well-correlated with independent reference chronologies built at the stand level. We thus conclude that tree-ring data from NFIs provide an extraordinary opportunity to strengthen the spatial and temporal coverage of tree-ring data and to improve coordination with other contemporary measurements of forest growth to provide a better understanding of tree growth-climate relationships over broad spatial scales.


Asunto(s)
Clima , Bosques , Árboles , Ecosistema , Quebec
13.
Nat Plants ; 2(12): 16187, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27909293

RESUMEN

Because of global warming, the frequency and severity of droughts are expected to increase, which will have an impact on forest ecosystem health worldwide1. Although the impact of drought on tree growth and mortality is being increasingly documented2-4, very little is known about the impact on nutrient cycling in forest ecosystems. Here, based on long-term monitoring data, we report nutrient fluxes in a boreal forest before, during and following a severe drought in July 2012. During and shortly after the drought, we observed high throughfall (rain collected below the canopy) concentrations of nutrient base cations (potassium, calcium and magnesium), chlorine, phosphorus and dissolved organic carbon (DOC), differing by one to two orders of magnitude relative to the long-term normal, and resulting in important canopy losses. The high throughfall fluxes had repercussions in the soil solution at a depth of 30 cm, leading to high DOC, chlorine and potassium concentrations. The net potassium losses (atmospheric deposition minus leaching losses) following the drought were especially important, being the equivalent of nearly 20 years of net losses under 'normal' conditions. Our data show that droughts have unexpected impacts on nutrient cycling through impacts on tree canopy and soils and may lead to important episodes of potassium losses from boreal forest ecosystems. The potassium losses associated with drought will add to those originating from tree harvesting and from forest fires and insect outbreaks5-7 (with the last two being expected to increase in the future as a result of climate change), and may contribute to reduced potassium availability in boreal forests in a warming world.


Asunto(s)
Cambio Climático , Sequías , Taiga , Árboles/fisiología , Quebec
14.
PeerJ ; 4: e1767, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26966680

RESUMEN

Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.

15.
PLoS One ; 10(12): e0144844, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26682889

RESUMEN

Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999-2011 period from 121 maple stands in 11 regions of Québec (Canada) to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88) using the average temperature from January to April (TJ-A). A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15-19 days earlier on average in the 2080-2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low.


Asunto(s)
Acer/crecimiento & desarrollo , Producción de Cultivos/tendencias , Cambio Climático , Modelos Logísticos , Modelos Biológicos , Quebec , Estaciones del Año
16.
J Environ Qual ; 31(5): 1676-83, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12371186

RESUMEN

Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.


Asunto(s)
Acer/crecimiento & desarrollo , Lluvia Ácida/efectos adversos , Suelo , Árboles , Concentración de Iones de Hidrógeno , Nitrógeno , Dinámica Poblacional , Azufre
17.
J Environ Qual ; 31(6): 1993-2000, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12469849

RESUMEN

An evaluation of the impact of dolomitic lime [CaMg(CO3)2] on soils (five years after treatment) and sapwood chemistry (after four growing seasons) was realized for a Ca-deficient sugar maple stand at the lake Clair watershed. The effect on humus chemistry was significant: exchangeable Mg and Ca, effective acidity (EA), base saturation (BSe), pH, and effective cation exchange capacity (CECe) significantly increased, while exchangeable Fe significantly decreased. In the B horizon, liming increased exchangeable Ca, Mg, and Mn concentrations while decreasing other acid cations. No significant temporal trends in element concentrations in tree rings could be detected, although the lime treatment significantly changed the average xylem Mg and Mn concentrations as well as the average Mg/Mn and Ca/Mn ratios of the sapwood. The absence of temporal trends in rings from the last 20 yr implied a significant re-equilibration of elements through the sapwood. Significant relationships were found between averaged xylem Ca/Mn and Mg/Mn ratios and exchangeable humus Ca, Mg, Mn, Al, Fe, and H+ concentration, EA, CECe, and BSe, suggesting that the average xylem Ca/Mn and Mg/Mn ratios are strong indicators of the soil acid-base status.


Asunto(s)
Acer/química , Carbonato de Calcio/química , Compuestos de Calcio/química , Calcio/análisis , Monitoreo del Ambiente/métodos , Magnesio/química , Óxidos/química , Contaminantes del Suelo/análisis , Magnesio/análisis , Manganeso/análisis , Árboles/química
18.
PeerJ ; 2: e428, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24949244

RESUMEN

Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001-2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions.

19.
Environ Monit Assess ; 109(1-3): 1-36, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16240186

RESUMEN

To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO(4)), inorganic nitrogen (NO(3)-N; NH(4)-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO(4) deposition during the 1990s ranged between 7.3 and 28.4 kg ha(-1) per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha(-1) per year, of which 41-67% was nitrate (NO(3)-N). Over the period of record, SO(4) concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO(4) in runoff decreased at 14/17 catchments. In contrast, NO(3)-N concentrations in deposition decreased in only 1/14 regions, while NH(4)-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH(4)-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31-100%; median 94%) was retained in the catchments, although there was a tendency for greater NO(3)-N leaching at sites receiving higher (<7 kg ha(-1) per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO(4) and H(+) deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern.


Asunto(s)
Calcio/análisis , Magnesio/análisis , Nitrógeno/análisis , Potasio/análisis , Sulfatos/análisis , Lluvia Ácida , Canadá , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Europa (Continente) , Ríos/química , Árboles , Estados Unidos , Movimientos del Agua , Abastecimiento de Agua
20.
In. Granados, Carmen Elisa. Metodos para proyecciones subnacionales de poblacion. Bogota, Centro Latinoamericano de Demografia, nov. 1989. p.71-126, tab.
Monografía en Español | LILACS | ID: lil-133960
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA