Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 296: 100421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33609524

RESUMEN

Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.


Asunto(s)
Enfermedades Transmisibles/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Mutación , Proteínas de Transporte Vesicular/genética
2.
Chembiochem ; 21(21): 3087-3095, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32511842

RESUMEN

Conformationally flexible protein complexes represent a major challenge for structural and dynamical studies. We present herein a method based on a hybrid NMR/MD approach to characterize the complex formed between the disordered p53TAD1-60 and the metastasis-associated S100A4. Disorder-to-order transitions of both TAD1 and TAD2 subdomains upon interaction is detected. Still, p53TAD1-60 remains highly flexible in the bound form, with residues L26, M40, and W53 being anchored to identical hydrophobic pockets of the S100A4 monomer chains. In the resulting "fuzzy" complex, the clamp-like binding of p53TAD1-60 relies on specific hydrophobic anchors and on the existence of extended flexible segments. Our results demonstrate that structural and dynamical NMR parameters (cumulative Δδ, SSP, temperature coefficients, relaxation time, hetNOE) combined with MD simulations can be used to build a structural model even if, due to high flexibility, the classical solution structure calculation is not possible.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Proteína de Unión al Calcio S100A4/química , Proteína p53 Supresora de Tumor/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Proteína de Unión al Calcio S100A4/genética , Proteína p53 Supresora de Tumor/genética
3.
Anal Chem ; 91(8): 4929-4933, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30742767

RESUMEN

The key questions in folding studies are the protein dimensions and the degree of folding. These properties are best characterized by the self-diffusion coefficients D determining the hydrodynamic dimensions. In our present study, we derive empirical variations of D as a function of molecular mass M that distinguish folded, intrinsically disordered, and urea-denatured biomolecules. Reliable D values are obtained from diffusion NMR measurements performed under identical conditions using a representative set of proteins/peptides with diverse amino acid sequence and length. The established relations are easy to use analytical tools for molecular mass analysis and aggregation studies as well. Deriving equations under denaturing conditions has several pitfalls, and here, we provide a simple quantitative method for estimating the debated end point of denaturation, while already the 1D 1H spectrum gives a qualitative picture of the collapsed, denatured structure. Data indicate that the intrinsically disordered proteins have a similar behavior as synthetic polymers and urea-denatured proteins.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Desnaturalización Proteica , Proteínas/química , Difusión , Peso Molecular
4.
Proc Natl Acad Sci U S A ; 112(9): 2711-6, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730857

RESUMEN

Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/química , Complejos Multienzimáticos/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Dominio Catalítico , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
5.
Front Mol Biosci ; 11: 1347741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516187

RESUMEN

Annexin A11 (ANXA11) is a calcium-dependent phospholipid-binding protein belonging to the annexin protein family and implicated in the neurodegenerative amyotrophic lateral sclerosis. Structurally, ANXA11 contains a conserved calcium-binding C-terminal domain common to all annexins and a putative intrinsically unfolded N-terminus specific for ANXA11. Little is known about the structure and functions of this region of the protein. By analogy with annexin A1, it was suggested that residues 38 to 59 within the ANXA11 N-terminus could form a helical region that would be involved in interactions. Interestingly, this region contains residues that, when mutated, may lead to clinical manifestations. In the present study, we have studied the structural features of the full-length protein with special attention to the N-terminal region using a combination of biophysical techniques which include nuclear magnetic resonance and small angle X-ray scattering. We show that the N-terminus is intrinsically disordered and that the overall features of the protein are not markedly affected by the presence of calcium. We also analyzed the 38-59 helix hypothesis using synthetic peptides spanning both the wild-type sequence and clinically relevant mutations. We show that the peptides have a remarkable character typical of a native helix and that mutations do not alter the behaviour suggesting that they are required for interactions rather than being structurally important. Our work paves the way to a more thorough understanding of the ANXA11 functions.

6.
Front Mol Biosci ; 8: 773234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35237655

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient's neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.

7.
Biomol NMR Assign ; 15(2): 235-241, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33755914

RESUMEN

As part of an International consortium aiming at the characterization by NMR of the proteins of the SARS-CoV-2 virus, we have obtained the virtually complete assignment of the backbone atoms of the non-structural protein nsp9. This small (12 kDa) protein is encoded by ORF1a, binds to RNA and seems to be essential for viral RNA synthesis. The crystal structures of the SARS-CoV-2 protein and other homologues suggest that the protein is dimeric as also confirmed by analytical ultracentrifugation and dynamic light scattering. Our data constitute the prerequisite for further NMR-based characterization, and provide the starting point for the identification of small molecule lead compounds that could interfere with RNA binding and prevent viral replication.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión al ARN/química , Proteínas no Estructurales Virales/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA