Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Endocrinol Metab ; 327(1): E27-E41, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690938

RESUMEN

Pancreatic endocrine cells employ a sophisticated system of paracrine and autocrine signals to synchronize their activities, including glutamate, which controls hormone release and ß-cell viability by acting on glutamate receptors expressed by endocrine cells. We here investigate whether alteration of the excitatory amino acid transporter 2 (EAAT2), the major glutamate clearance system in the islet, may occur in type 2 diabetes mellitus and contribute to ß-cell dysfunction. Increased EAAT2 intracellular localization was evident in islets of Langerhans from T2DM subjects as compared with healthy control subjects, despite similar expression levels. Chronic treatment of islets from healthy donors with high-glucose concentrations led to the transporter internalization in vesicular compartments and reduced [H3]-d-glutamate uptake (65 ± 5% inhibition), phenocopying the findings in T2DM pancreatic sections. The transporter relocalization was associated with decreased Akt phosphorylation protein levels, suggesting an involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the process. In line with this, PI3K inhibition by a 100-µM LY294002 treatment in human and clonal ß-cells caused the transporter relocalization in intracellular compartments and significantly reduced the glutamate uptake compared to control conditions, suggesting that hyperglycemia changes the trafficking of the transporter to the plasma membrane. Upregulation of the glutamate transporter upon treatment with the antibiotic ceftriaxone rescued hyperglycemia-induced ß-cells dysfunction and death. Our data underscore the significance of EAAT2 in regulating islet physiology and provide a rationale for potential therapeutic targeting of this transporter to preserve ß-cell survival and function in diabetes.NEW & NOTEWORTHY The glutamate transporter SLC1A2/excitatory amino acid transporter 2 (EAAT2) is expressed on the plasma membrane of pancreatic ß-cells and controls islet glutamate clearance and ß-cells survival. We found that the EAAT2 membrane expression is lost in the islets of Langerhans from type 2 diabetes mellitus (T2DM) patients due to hyperglycemia-induced downregulation of the phosphoinositide 3-kinase/Akt pathway and modification of its intracellular trafficking. Pharmacological rescue of EAAT2 expression prevents ß-cell dysfunction and death, suggesting EAAT2 as a new potential target of intervention in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico , Hiperglucemia , Islotes Pancreáticos , Transportador 2 de Aminoácidos Excitadores/metabolismo , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ácido Glutámico/metabolismo , Hiperglucemia/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Femenino , Transporte de Proteínas , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Anciano , Adulto , Animales , Fosfatidilinositol 3-Quinasas/metabolismo
2.
Biomolecules ; 13(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36830593

RESUMEN

Pancreatic ß-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls ß-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated ß-cell function remains an open and attractive area of investigation. Studies indicate that ß-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic ß-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the ß-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreción de Insulina , Insulina/metabolismo , Colesterol/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
3.
Metabolism ; 136: 155291, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35981632

RESUMEN

BACKGROUND: Cholesterol is central to pancreatic ß-cell physiology and alterations of its homeostasis contribute to ß-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts ß-cells function. METHODS: Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal ß-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS: Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable ß-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated­calcium dynamics were detected in PCSK9-deficient ß-cells. Mechanistically, pancreatic PCSK9 silencing impacts ß-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS: These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the ß-cell secretory pathway, via modulation of cholesterol homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proproteína Convertasa 9 , Animales , Glucemia/metabolismo , Calcio/metabolismo , Colesterol , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados , Páncreas/metabolismo , Proinsulina/metabolismo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas SNARE/metabolismo , Vías Secretoras , Serina Endopeptidasas/genética , Subtilisinas/metabolismo
4.
Cells ; 10(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831062

RESUMEN

Iron is an essential element involved in a variety of physiological functions. In the pancreatic beta-cells, being part of Fe-S cluster proteins, it is necessary for the correct insulin synthesis and processing. In the mitochondria, as a component of the respiratory chain, it allows the production of ATP and reactive oxygen species (ROS) that trigger beta-cell depolarization and potentiate the calcium-dependent insulin release. Iron cellular content must be finely tuned to ensure the normal supply but also to prevent overloading. Indeed, due to the high reactivity with oxygen and the formation of free radicals, iron excess may cause oxidative damage of cells that are extremely vulnerable to this condition because the normal elevated ROS production and the paucity in antioxidant enzyme activities. The aim of the present review is to provide insights into the mechanisms responsible for iron homeostasis in beta-cells, describing how alteration of these processes has been related to beta-cell damage and failure. Defects in iron-storing or -chaperoning proteins have been detected in diabetic conditions; therefore, the control of iron metabolism in these cells deserves further investigation as a promising target for the development of new disease treatments.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Hierro/metabolismo , Animales , Diabetes Mellitus/metabolismo , Homeostasis , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA