Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
PLoS Pathog ; 18(3): e1010409, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344575

RESUMEN

Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved ß-sheet face of the ctCSP (denoted ß-ctCSP). Antibodies to the ß-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the ß-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Anticuerpos Antiprotozoarios , Epítopos , Humanos , Malaria Falciparum/prevención & control , Ratones , Plasmodium falciparum , Proteínas Protozoarias/genética
2.
J Med Virol ; 96(6): e29713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874194

RESUMEN

Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence is used to estimate the proportion of individuals within a population previously infected, to track viral transmission, and to monitor naturally and vaccine-induced immune protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivitiy to SARS-CoV-2 in Africa, we measured immunoglobulin G (IgG), IgA, and IgM to a broad panel of antigens from different pathogens by Luminex in 602 plasma samples from African and European subjects differing in coronavirus disease 2019, malaria, and other exposures. Seroreactivity to SARS-CoV-2 antigens was higher in prepandemic African than in European samples and positively correlated with antibodies against human coronaviruses, helminths, protozoa, and especially Plasmodium falciparum. African subjects presented higher levels of autoantibodies, a surrogate of polyreactivity, which correlated with P. falciparum and SARS-CoV-2 antibodies. Finally, we found an improved sensitivity in the IgG assay in African samples when using urea as a chaotropic agent. In conclusion, our data suggest that polyreactive antibodies induced mostly by malaria are important mediators of the unspecific anti-SARS-CoV-2 responses, and that the use of dissociating agents in immunoassays could be useful for more accurate estimates of SARS-CoV-2 seroprevalence in African settings.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , SARS-CoV-2/inmunología , Inmunoglobulina G/sangre , Adulto , Masculino , Femenino , Persona de Mediana Edad , Malaria/epidemiología , Malaria/inmunología , Malaria/sangre , Inmunoglobulina M/sangre , Adulto Joven , Anciano , Adolescente , Europa (Continente)/epidemiología , Inmunoglobulina A/sangre , Enfermedades Endémicas , África/epidemiología , África del Sur del Sahara/epidemiología
3.
Cell Mol Life Sci ; 80(3): 74, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847896

RESUMEN

Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a ß-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.


Asunto(s)
Eritrocitos , Malaria , Proteínas de la Membrana , Proteínas Protozoarias , Humanos , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria/genética , Malaria/metabolismo , Malaria/parasitología , Malaria/prevención & control , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754682

RESUMEN

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Lactante , Recién Nacido , Humanos , Preescolar , Femenino , Embarazo , Plasmodium falciparum , Estudios de Cohortes , Burkina Faso/epidemiología , Exposición Materna , Placenta , Anticuerpos Antiprotozoarios , Malaria/epidemiología , Inmunoglobulina G , Antígenos de Protozoos
5.
Proc Natl Acad Sci U S A ; 117(6): 3114-3122, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988134

RESUMEN

Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria , Malaria Falciparum/inmunología , Plasmodium falciparum , Proteínas Protozoarias , Virus del Mosaico del Tabaco/genética , Animales , Células HEK293 , Humanos , Inmunogenicidad Vacunal , Macaca mulatta , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Ingeniería de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología
6.
Malar J ; 19(1): 159, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303235

RESUMEN

BACKGROUND: Profiling immune responses induced by either infection or vaccination can provide insight into identification of correlates of protection. Furthermore, profiling of serological responses can be used to identify biomarkers indicative of exposure to pathogens. Conducting such immune surveillance requires readout methods that are high-throughput, robust, and require small sample volumes. While the enzyme-linked immunosorbent assay (ELISA) is the classical readout method for assessing serological responses, the advent of multiplex assays has significantly increased the throughput and capacity for immunoprofiling. This report describes the development and assay performance (sensitivity, linearity of detection, requirement for multiple dilutions for each sample, intra- and inter-assay variability) of an electro-chemiluminescence (ECLIA)-based multiplex assay. METHODS: The current study describes the development of a multiplex ECLIA-based assay and characterizes the sensitivity, linear range, and inter- and intra-assay variability of the ECLIA platform and its agreement with the traditional ELISA. Special emphasis was placed on potential antigenic competition when testing closely related antigens in the multiplex format. RESULTS: Multiplexing of antigens in ECLIA provides significant practical benefits in terms of reducing sample volume requirements and experimental time. Beyond the practical advantages of multiplexing, the ECLIA provides superior assay performance when compared to the ELISA. Not only does ECLIA show good agreement with the ELISA assay, but the linear range of ECLIA is also sufficiently wide to permit single-dilution measurements of concentration without the need to do serial dilutions. The lack of antigenic competition allows the simultaneous testing of closely related antigens, such as plate antigens representing different alleles of the same protein, which can inform about cross-reactivities-or lack thereof-of serological responses. CONCLUSION: The advantages of the newly developed tool for assessing the antigen profiles of serological responses may ultimately lead to the identification of biomarkers associated with various disease stages and or protection against disease.


Asunto(s)
Fenómenos Fisiológicos Sanguíneos , Ensayo de Inmunoadsorción Enzimática/métodos , Mediciones Luminiscentes/métodos , Vacunas contra la Malaria/sangre , Malaria/prevención & control , Vacunación , Humanos , Sensibilidad y Especificidad , Serología
7.
J Immunol ; 201(4): 1315-1326, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30006374

RESUMEN

Ab avidity is a measure of the overall strength of Ab-Ag interactions and hence is important for understanding the functional efficiency of Abs. In vaccine evaluations, Ab avidity measurements can provide insights into immune correlates of protection and generate hypotheses regarding mechanisms of protection to improve vaccine design to achieve higher levels of efficacy. The commonly used Ab avidity assays require the use of chaotropic reagents to measure avidity index. In this study, using real-time detection of Ab-Ag binding by biolayer interferometry (BLI) technique, we have developed a qualified assay for measuring avidity of vaccine-induced Abs specific for Plasmodium falciparum circumsporozoite protein (CSP) Ags. Human mAb derived from plasmablasts of recipients of RTS,S/AS01 (RTS,S), the most advanced malaria vaccine candidate, were used in the assay development to measure Ag-specific binding responses and rate constants of association and dissociation. The optimized BLI binding assay demonstrated 1) good precision (percentage of coefficient of variation <20), 2) high specificity, 3) a lower limit of detection and quantitation in the 0.3-3.3 nM range, and 4) a range of linearity up to 50-100 nM for the CSP Ags tested. Analysis of polyclonal sera of malaria vaccinees demonstrated the suitability of this method to distinguish among vaccinees and rank Ab responses by avidity. These results demonstrate that precise, specific, and sensitive BLI measurements of Ab avidity in polyclonal sera from malaria vaccinees can map Ab response heterogeneity and potentially help to determine the role of Ab avidity as an immune correlate of protection for vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Interferometría/métodos , Vacunas contra la Malaria/inmunología , Humanos , Malaria Falciparum/inmunología , Plasmodium falciparum
8.
J Infect Dis ; 219(12): 1969-1979, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30649381

RESUMEN

BACKGROUND: The impact of preexisting immunity on the efficacy of artemisinin combination therapy must be examined to monitor resistance, and for implementation of new treatment strategies. METHODS: Serum samples obtained from a clinical trial in Western Kenya randomized to receive artemether-lumefantrine (AL) or artesunate-mefloquine (ASMQ) were screened for total immunoglobulin G against preerythrocytic and erythrocytic antigens. The association and correlation between different variables, and impact of preexisting immunity on parasite slope half-life (t½) was determined. RESULTS: There was no significant difference in t½, but the number of individuals with lag phase was significantly higher in the AL than in the ASMQ arm (29 vs 13, respectively; P < .01). Circumsporozoite protein-specific antibodies correlate positively with t½ (AL, P = .03; ASMQ, P = .09), but negatively with clearance rate in both study arms (AL, P = .16; ASMQ, P = .02). The t½ correlated negatively with age in ASMQ group. When stratified based on t½, the antibody titers against circumsporozoite protein and merozoite surface protein 1 were significantly higher in participants who cleared parasites rapidly in the AL group (P = .01 and P = .02, respectively). CONCLUSION: Data presented here define immunoprofiles associated with distinct responses to 2 different antimalarial drugs, revealing impact of preexisting immunity on the efficacy of artemisinin combination therapy regimens in a malaria-holoendemic area. CLINICAL TRIALS REGISTRATION: NCT01976780.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Kenia , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/inmunología , Masculino , Mefloquina/uso terapéutico , Carga de Parásitos
9.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559218

RESUMEN

Seroepidemiological studies on the prevalence of antibodies to malaria antigens are primarily conducted on individuals from regions of endemicity. It is therefore difficult to accurately correlate the antibody responses to the timing and number of prior malaria infections. This study was undertaken to assess the evolution of antibodies to the dominant surface antigens of Plasmodium vivax and P. falciparum following controlled human malaria infection (CHMI) in malaria-naive individuals. Serum samples from malaria-naive adults, collected before and after CHMI with either P. vivax (n = 18) or P. falciparum (n = 18), were tested for the presence of antibodies to the circumsporozoite protein (CSP) and the 42-kDa fragment of merozoite surface protein 1 (MSP-142) of P. vivax and P. falciparum using an enzyme-linked immunosorbent assay (ELISA). Approximately 1 month following CHMI with either P. vivax or P. falciparum, >60% of subjects seroconverted to homologous CSP and MSP-1. More than 50% of the subjects demonstrated reactivity to heterologous CSP and MSP-142, and a similar proportion of subjects remained seropositive to homologous MSP-142 >5 months after CHMI. Computational analysis provides insight into the presence of cross-reactive responses. The presence of long-lived and heterologous reactivity and its functional significance, if any, need to be taken into account while evaluating malaria exposure in field settings.


Asunto(s)
Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Malaria Falciparum/inmunología , Malaria Vivax/inmunología , Plasmodium falciparum , Plasmodium vivax , Adolescente , Adulto , Animales , Anopheles/parasitología , Epítopos de Linfocito B , Femenino , Humanos , Malaria Falciparum/parasitología , Malaria Vivax/parasitología , Masculino , Persona de Mediana Edad , Mosquitos Vectores/parasitología , Proteínas Protozoarias/inmunología , Adulto Joven
10.
BMC Med ; 17(1): 157, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31409398

RESUMEN

BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Formación de Anticuerpos , Antígenos de Protozoos/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Plasmodium falciparum/inmunología , Vacunación/métodos
11.
Malar J ; 18(1): 186, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142328

RESUMEN

BACKGROUND: Whole parasite vaccination is an efficacious strategy to induce sterile immunity and to prevent malaria transmission. Understanding the mechanism and response of immune cells to vaccines plays a critical role in deciphering correlates of protection against infection and disease. Immunoassays, such as ELISpot, are commonly used to assess the immunogenicity of vaccines towards T cells and B cells. To date, these assays only analyse responses to specific antigens since they are based on recombinant parasite-derived proteins or peptides. There is the need for an agnostic approach that allows the evaluation of all sporozoite-associated antigens. METHODS: ELISpot plates coated with a defined amount of lysed Plasmodium falciparum sporozoites were used to assess the frequency of sporozoite-specific B cells in peripheral blood mononuclear cells from donors immunized with either a recombinant malaria vaccine or irradiated sporozoites. RESULTS: This report describes the assay conditions for a specific and sensitive sporozoite-based B cell ELISpot assay. The assay development considers the quality of sporozoite preparation as well as the detection threshold of the frequency of antigen-specific B cells. The assay enables the detection of sporozoite-specific IgM and IgG-producing B cells. Moreover, the assay can detect sporozoite-reactive B cells from subjects that were either vaccinated with the radiation attenuated sporozoite vaccine or a recombinant pre-erythrocytic vaccine. CONCLUSION: The newly developed sporozoite-based B cell ELISpot enables the monitoring of changes in the frequency of sporozoite-specific B cells. Applying this assay to assess the potency of vaccination regimens or seasonal changes in B cell populations from subjects residing in malaria-endemic areas will provide an opportunity to gain insight into immune mechanisms involved in protection and/or disease.


Asunto(s)
Linfocitos B/inmunología , Ensayo de Immunospot Ligado a Enzimas , Vacunas contra la Malaria/inmunología , Esporozoítos/inmunología , Esporozoítos/efectos de la radiación , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Ensayos Clínicos como Asunto , Humanos , Leucocitos Mononucleares/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Sensibilidad y Especificidad , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
12.
Malar J ; 18(1): 377, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775762

RESUMEN

BACKGROUND: Indian-origin rhesus (InR) are preferred for research, but strict export restrictions continue to limit their use. Chinese-origin rhesus (ChR), although easier to procure, are genetically distinct from InR and differ in their immune response to infectious agents, such as the Simian Immunodeficiency Virus. The most advanced malaria vaccine, RTS,S (GlaxoSmithKline), is based on the circumsporozoite protein (CSP) of Plasmodium falciparum. The efficacy of RTS,S vaccine in the field remains low and short-lived; efforts are underway to improve CSP-based vaccines. Rhesus models can accelerate preclinical down-selection of the next generation of malaria vaccines. This study was used to determine if the safety and immunogenicity outcomes following vaccination with a CSP vaccine would differ in the InR and ChR models, given the genetic differences between the two sub-populations of rhesus. METHODS: The FMP013 vaccine, was composed of nearly full-length soluble P. falciparum CSP produced in Escherichia coli and was adjuvanted with the Army liposomal formulation (ALFQ). Three doses of the vaccine were administered in InR and ChR (n = 6) at 1-month intervals and the antibody and T cell responses were assessed. RESULTS: Local and systemic toxicity profile of FMP013 vaccine in InR and ChR were similar and they revealed that the FMP013 vaccine was safe and caused only mild and transient inflammatory adverse reactions. Following the first 2 vaccines, there was a slower acquisition of antibodies to the CSP repeat region in ChR. However after the 3rd vaccination the titers in the two models were comparable. The ChR group repeat-specific antibodies had higher avidity and ChR group showed higher inhibition of liver stage development activity compared to InR. There was no difference in T-cell responses to the FMP013 vaccine between the two models. CONCLUSIONS: A difference in the quality of serological responses was detected between the two sub-populations of rhesus. However, both models confirmed that FMP013/ALFQ vaccine was safe, highly immunogenic, elicited functional antibodies and T-cell responses. Overall, the data suggests that rhesus of Indian and Chinese origins can be interchangeably used to compare the safety and immunogenicity of next-generation of malaria vaccines and adjuvants.


Asunto(s)
Inmunogenicidad Vacunal , Macaca mulatta/inmunología , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/terapia , Proteínas Protozoarias/inmunología , Animales , China , India , Especificidad de la Especie
13.
Malar J ; 18(1): 300, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477111

RESUMEN

BACKGROUND: The ability to report vaccine-induced IgG responses in terms of µg/mL, as opposed arbitrary units (AU), enables a more informed interpretation of the magnitude of the immune response, and better comparison between vaccines targeting different antigens. However, these interpretations rely on the accuracy of the methodology, which is used to generate ELISA data in µg/mL. In a previous clinical trial of a vaccine targeting the apical membrane antigen 1 (AMA1) from Plasmodium falciparum, three laboratories (Oxford, NIH and WRAIR) reported ELISA data in µg/mL that were correlated but not concordant. This current study sought to harmonize the methodology used to generate a conversion factor (CF) for ELISA analysis of human anti-AMA1 IgG responses across the three laboratories. METHODS: Purified IgG was distributed to the three laboratories and, following a set protocol provided by NIH, AMA1-specific human IgG was affinity purified. A new "harmonized CF" was generated by each laboratory using their in-house ELISA, and the original clinical trial ELISA data were re-analysed accordingly. RESULTS: Statistical analysis showed that the data remained highly correlated across all three laboratories, although only Oxford and NIH were able to harmonize their CF for ELISA and generate concordant data. CONCLUSIONS: This study enabled two out of the three laboratories to harmonize their µg/mL readouts for the human anti-AMA1 IgG ELISA, but results reported from WRAIR are ~ twofold higher. Given the need to validate such information for each species and antigen of interest, it is important to bear in mind these likely differences when interpreting µg/mL ELISA data in the future.


Asunto(s)
Anticuerpos Antiprotozoarios/análisis , Técnicas de Laboratorio Clínico/normas , Ensayo de Inmunoadsorción Enzimática/normas , Inmunoglobulina G/análisis , Vacunas contra la Malaria/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Ensayos Clínicos como Asunto , Humanos , Inmunoglobulina G/inmunología , Malaria Falciparum/prevención & control , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología
14.
Malar J ; 18(1): 13, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658710

RESUMEN

BACKGROUND: A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS: Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS: AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS: Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos de Protozoos/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/administración & dosificación , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Malí , Proteínas de la Membrana/administración & dosificación , Proteínas Protozoarias/administración & dosificación
15.
BMC Med ; 16(1): 197, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30376866

RESUMEN

BACKGROUND: The RTS,S/AS01E vaccine provides partial protection against malaria in African children, but immune responses have only been partially characterized and do not reliably predict protective efficacy. We aimed to evaluate comprehensively the immunogenicity of the vaccine at peak response, the factors affecting it, and the antibodies associated with protection against clinical malaria in young African children participating in the multicenter phase 3 trial for licensure. METHODS: We measured total IgM, IgG, and IgG1-4 subclass antibodies to three constructs of the Plasmodium falciparum circumsporozoite protein (CSP) and hepatitis B surface antigen (HBsAg) that are part of the RTS,S vaccine, by quantitative suspension array technology. Plasma and serum samples were analyzed in 195 infants and children from two sites in Ghana (Kintampo) and Mozambique (Manhiça) with different transmission intensities using a case-control study design. We applied regression models and machine learning techniques to analyze immunogenicity, correlates of protection, and factors affecting them. RESULTS: RTS,S/AS01E induced IgM and IgG, predominantly IgG1 and IgG3, but also IgG2 and IgG4, subclass responses. Age, site, previous malaria episodes, and baseline characteristics including antibodies to CSP and other antigens reflecting malaria exposure and maternal IgGs, nutritional status, and hemoglobin concentration, significantly affected vaccine immunogenicity. We identified distinct signatures of malaria protection and risk in RTS,S/AS01E but not in comparator vaccinees. IgG2 and IgG4 responses to RTS,S antigens post-vaccination, and anti-CSP and anti-P. falciparum antibody levels pre-vaccination, were associated with malaria risk over 1-year follow-up. In contrast, antibody responses to HBsAg (all isotypes, subclasses, and timepoints) and post-vaccination IgG1 and IgG3 to CSP C-terminus and NANP were associated with protection. Age and site affected the relative contribution of responses in the correlates identified. CONCLUSIONS: Cytophilic IgG responses to the C-terminal and NANP repeat regions of CSP and anti-HBsAg antibodies induced by RTS,S/AS01E vaccination were associated with malaria protection. In contrast, higher malaria exposure at baseline and non-cytophilic IgG responses to CSP were associated with disease risk. Data provide new correlates of vaccine success and failure in African children and reveal key insights into the mode of action that can guide development of more efficacious next-generation vaccines.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vacunas contra Hepatitis B/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , África , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino
16.
Malar J ; 17(1): 219, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859096

RESUMEN

BACKGROUND: The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. RESULTS: Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. CONCLUSIONS: With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study.


Asunto(s)
Anticuerpos Antiprotozoarios/análisis , Isotipos de Inmunoglobulinas/análisis , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Pruebas Serológicas/métodos , Inmunoglobulina E/análisis , Inmunoglobulina G/análisis , Inmunoglobulina M/análisis , Vacunas contra la Malaria/inmunología , Estudios Seroepidemiológicos
17.
Malar J ; 16(1): 115, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28288639

RESUMEN

BACKGROUND: Non-human primates, such as the rhesus macaques, are the preferred model for down-selecting human malaria vaccine formulations, but the rhesus model is expensive and does not allow for direct efficacy testing of human malaria vaccines. Transgenic rodent parasites expressing genes of human Plasmodium are now routinely used for efficacy studies of human malaria vaccines. Mice have however rarely predicted success in human malaria trials and there is scepticism whether mouse studies alone are sufficient to move a vaccine candidate into the clinic. METHODS: A comparison of immunogenicity, fine-specificity and functional activity of two Alum-adjuvanted Plasmodium falciparum circumsporozoite protein (CSP)-based vaccines was conducted in mouse and rhesus models. One vaccine was a soluble recombinant protein (CSP) and the other was the same CSP covalently conjugated to the Qß phage particle (Qß-CSP). RESULTS: Mice showed different kinetics of antibody responses and different sensitivity to the NANP-repeat and N-terminal epitopes as compared to rhesus. While mice failed to discern differences between the protective efficacy of CSP versus Qß-CSP vaccine following direct challenge with transgenic Plasmodium berghei parasites, rhesus serum from the Qß-CSP-vaccinated animals induced higher in vivo sporozoite neutralization activity. CONCLUSIONS: Despite some immunologic parallels between models, these data demonstrate that differences between the immune responses induced in the two models risk conflicting decisions regarding potential vaccine utility in humans. In combination with historical observations, the data presented here suggest that although murine models may be useful for some purposes, non-human primate models may be more likely to predict the human response to investigational vaccines.


Asunto(s)
Vacunas contra la Malaria/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Femenino , Inmunogenicidad Vacunal , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/inmunología
18.
J Infect Dis ; 214(5): 762-71, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27296848

RESUMEN

BACKGROUND: Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS: In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS: A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS: A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION: NCT01857869.


Asunto(s)
Esquemas de Inmunización , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Anticuerpos Antiprotozoarios/inmunología , Afinidad de Anticuerpos , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Masculino , Persona de Mediana Edad , Adulto Joven
19.
J Infect Dis ; 213(11): 1743-51, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908756

RESUMEN

BACKGROUND: Models of controlled human malaria infection (CHMI) initiated by mosquito bite have been widely used to assess efficacy of preerythrocytic vaccine candidates in small proof-of-concept phase 2a clinical trials. Efficacy testing of blood-stage malaria parasite vaccines, however, has generally relied on larger-scale phase 2b field trials in malaria-endemic populations. We report the use of a blood-stage P. falciparum CHMI model to assess blood-stage vaccine candidates, using their impact on the parasite multiplication rate (PMR) as the primary efficacy end point. METHODS: Fifteen healthy United Kingdom adult volunteers were vaccinated with FMP2.1, a protein vaccine that is based on the 3D7 clone sequence of apical membrane antigen 1 (AMA1) and formulated in Adjuvant System 01 (AS01). Twelve vaccinees and 15 infectivity controls subsequently underwent blood-stage CHMI. Parasitemia was monitored by quantitative real-time polymerase chain reaction (PCR) analysis, and PMR was modeled from these data. RESULTS: FMP2.1/AS01 elicited anti-AMA1 T-cell and serum antibody responses. Analysis of purified immunoglobulin G showed functional growth inhibitory activity against P. falciparum in vitro. There were no vaccine- or CHMI-related safety concerns. All volunteers developed blood-stage parasitemia, with no impact of the vaccine on PMR. CONCLUSIONS: FMP2.1/AS01 demonstrated no efficacy after blood-stage CHMI. However, the model induced highly reproducible infection in all volunteers and will accelerate proof-of-concept testing of future blood-stage vaccine candidates. CLINICAL TRIALS REGISTRATION: NCT02044198.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adulto , Ensayo de Immunospot Ligado a Enzimas , Eritrocitos/parasitología , Femenino , Humanos , Inmunogenicidad Vacunal , Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Plasmodium falciparum/fisiología , Adulto Joven
20.
Malar J ; 15: 301, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27245446

RESUMEN

BACKGROUND: Recent vaccine studies have shown that the magnitude of an antibody response is often insufficient to explain efficacy, suggesting that characteristics regarding the quality of the antibody response, such as its fine specificity and functional activity, may play a major role in protection. Previous studies of the lead malaria vaccine candidate, RTS,S, have shown that circumsporozoite protein (CSP)-specific antibodies and CD4(+) T cell responses are associated with protection, however the role of fine specificity and biological function of CSP-specific antibodies remains to be elucidated. Here, the relationship between fine specificity, opsonization-dependent phagocytic activity and protection in RTS,S-induced antibodies is explored. METHODS: A new method for measuring the phagocytic activity mediated by CSP-specific antibodies in THP-1 cells is presented and applied to samples from a recently completed phase 2 RTS,S/AS01 clinical trial. The fine specificity of the antibody response was assessed using ELISA against three antigen constructs of CSP: the central repeat region, the C-terminal domain and the full-length protein. A multi-parameter analysis of phagocytic activity and fine-specificity data was carried out to identify potential correlates of protection in RTS,S. RESULTS: Results from the newly developed assay revealed that serum samples from RTS,S recipients displayed a wide range of robust and repeatable phagocytic activity. Phagocytic activity was correlated with full-length CSP and C-terminal specific antibody titres, but not to repeat region antibody titres, suggesting that phagocytic activity is primarily driven by C-terminal antibodies. Although no significant difference in overall phagocytic activity was observed with respect to protection, phagocytic activity expressed as 'opsonization index', a relative measure that normalizes phagocytic activity with CS antibody titres, was found to be significantly lower in protected subjects than non-protected subjects. CONCLUSIONS: Opsonization index was identified as a surrogate marker of protection induced by the RTS,S/AS01 vaccine and determined how antibody fine specificity is linked to opsonization activity. These findings suggest that the role of opsonization in protection in the RTS,S vaccine may be more complex than previously thought, and demonstrate how integrating multiple immune measures can provide insight into underlying mechanisms of immunity and protection.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Proteínas Opsoninas/sangre , Fagocitosis , Vacunas Sintéticas/inmunología , Línea Celular , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Humanos , Vacunas contra la Malaria/administración & dosificación , Vacunas Sintéticas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA