Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(36): e202306828, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37436086

RESUMEN

The development of reagents that can selectively react in complex biological media is an important challenge. Here we show that N1-alkylation of 1,2,4-triazines yields the corresponding triazinium salts, which are three orders of magnitude more reactive in reactions with strained alkynes than the parent 1,2,4-triazines. This powerful bioorthogonal ligation enables efficient modification of peptides and proteins. The positively charged N1-alkyl triazinium salts exhibit favorable cell permeability, which makes them superior for intracellular fluorescent labeling applications when compared to analogous 1,2,4,5-tetrazines. Due to their high reactivity, stability, synthetic accessibility and improved water solubility, the new ionic heterodienes represent a valuable addition to the repertoire of existing modern bioorthogonal reagents.

2.
Antimicrob Agents Chemother ; 58(2): 664-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24145524

RESUMEN

Adenylate cyclase toxin (ACT) is the key virulence factor of Bordetella pertussis that facilitates its invasion into the mammalian body. 9-[2-(Phosphonomethoxy)ethyl]adenine diphosphate (PMEApp), the active metabolite of the antiviral drug bis(POM)PMEA (adefovir dipivoxil), has been shown to inhibit ACT. The objective of this study was to evaluate six novel amidate prodrugs of PMEA, both phenyloxy phosphonamidates and phosphonodiamidates, for their ability to inhibit ACT activity in the J774A.1 macrophage cell line. The two phenyloxy phosphonamidate prodrugs exhibited greater inhibitory activity (50% inhibitory concentration [IC50] = 22 and 46 nM) than the phosphonodiamidates (IC50 = 84 to 3,960 nM). The inhibitory activity of the prodrugs correlated with their lipophilicity and the degree of their hydrolysis into free PMEA in J774A.1 cells. Although the prodrugs did not inhibit ACT as effectively as bis(POM)PMEA (IC50 = 6 nM), they were significantly less cytotoxic. Moreover, they all reduced apoptotic effects of ACT and prevented an ACT-induced elevation of intracellular [Ca(2+)]i. The amidate prodrugs were less susceptible to degradation in Caco-2 cells compared to bis(POM)PMEA, while they exerted good transepithelial permeability in this assay. As a consequence, a large amount of intact amidate prodrug is expected to be available to target macrophages in vivo. This feature makes nontoxic amidate prodrugs attractive candidates for further investigation as novel antimicrobial agents.


Asunto(s)
Adenina/análogos & derivados , Toxina de Adenilato Ciclasa/antagonistas & inhibidores , Antibacterianos/farmacología , Bordetella pertussis/efectos de los fármacos , Profármacos/farmacología , Adenina/metabolismo , Adenina/farmacología , Toxina de Adenilato Ciclasa/metabolismo , Animales , Antibacterianos/metabolismo , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/patogenicidad , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Organofosfonatos/farmacología , Profármacos/metabolismo
3.
J Med Chem ; 67(12): 10135-10151, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38857067

RESUMEN

Yohimbine, a natural indole alkaloid and a nonselective adrenoceptor antagonist, possesses potential benefits in treating inflammatory disorders and sepsis. Nevertheless, its broader clinical use faces challenges due to its low receptor selectivity. A structure-activity relationship study of novel yohimbine analogues identified amino esters of yohimbic acid as potent and selective ADRA2A antagonists. Specifically, amino ester 4n, in comparison to yohimbine, showed a 6-fold higher ADRA1A/ADRA2A selectivity index (SI > 556 for 4n) and a 25-fold higher ADRA2B/ADRA2A selectivity index. Compound 4n also demonstrated high plasma and microsomal stability, moderate-to-low membrane permeability determining its limited ability to cross the blood-brain barrier, and negligible toxicity on nontumor normal human dermal fibroblasts. Compound 4n represents an important complementary pharmacological tool to study the involvement of adrenoceptor subtypes in pathophysiologic conditions such as inflammation and sepsis and a novel candidate for further preclinical development to treat ADRA2A-mediated pathologies.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 2 , Diseño de Fármacos , Receptores Adrenérgicos alfa 2 , Yohimbina , Humanos , Receptores Adrenérgicos alfa 2/metabolismo , Yohimbina/farmacología , Yohimbina/química , Relación Estructura-Actividad , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/química , Antagonistas de Receptores Adrenérgicos alfa 2/síntesis química , Animales
4.
RSC Med Chem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39220762

RESUMEN

The emergence of SARS-CoV-2, the causative agent of COVID-19, has highlighted the need for advanced antiviral strategies. Targeting the coronaviral methyltransferase nsp14, which is essential for RNA capping, offers a promising approach for the development of small-molecule inhibitors. We designed and synthesized a series of adenosine 5'-carboxamide derivatives as potential nsp14 inhibitors and identified coumarin analogs to be particularly effective. Structural modifications revealed the importance of the 5'-carboxyl moiety for the inhibitory activity, showing superior efficacy compared to other modifications. Notably, compound 18l (HK370) demonstrated high selectivity and favorable in vitro pharmacokinetic properties and exhibited moderate antiviral activity in cell-based assays. These findings provide a robust foundation for developing targeted nsp14 inhibitors as a potential treatment for COVID-19 and related diseases.

5.
Eur J Med Chem ; 260: 115717, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598483

RESUMEN

Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.


Asunto(s)
Microsomas , Quinazolinas , Humanos , Animales , Ratones , Quinazolinas/farmacología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor
6.
ACS Omega ; 8(30): 27410-27418, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546609

RESUMEN

The search for new drugs against COVID-19 and its causative agent, SARS-CoV-2, is one of the major trends in the current medicinal chemistry. Targeting capping machinery could be one of the therapeutic concepts based on a unique mechanism of action. Viral RNA cap synthesis involves two methylation steps, the first of which is mediated by the nsp14 protein. Here, we rationally designed and synthesized a series of compounds capable of binding to both the S-adenosyl-l-methionine and the RNA-binding site of SARS-CoV-2 nsp14 N7-methyltransferase. These hybrid molecules showed excellent potency, high selectivity toward various human methyltransferases, nontoxicity, and high cell permeability. Despite the outstanding activity against the enzyme, our compounds showed poor antiviral performance in vitro. This suggests that the activity of this viral methyltransferase has no significant effect on virus transcription and replication at the cellular level. Therefore, our compounds represent unique tools to further explore the role of the SARS-CoV-2 nsp14 methyltransferase in the viral life cycle and the pathogenesis of COVID-19.

7.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37134237

RESUMEN

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Asunto(s)
Inhibidores Enzimáticos , Purina-Nucleósido Fosforilasa , Humanos , Purina-Nucleósido Fosforilasa/metabolismo , Inhibidores Enzimáticos/química , Cristalografía
8.
J Med Chem ; 66(16): 11133-11157, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37535845

RESUMEN

FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Piridazinas , Humanos , Ratones , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridazinas/farmacología , Piridazinas/uso terapéutico , Leucemia Mieloide Aguda/patología , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Mutación , Apoptosis
9.
J Med Chem ; 64(22): 16425-16449, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34713696

RESUMEN

This study describes the discovery of novel prodrugs bearing tyrosine derivatives instead of the phenol moiety present in FDA-approved tenofovir alafenamide fumarate (TAF). The synthesis was optimized to afford diastereomeric mixtures of novel prodrugs in one pot (yields up to 86%), and the epimers were resolved using a chiral HPLC column into fast-eluting and slow-eluting epimers. In human lymphocytes, the most efficient tyrosine-based prodrug reached a single-digit picomolar EC50 value against HIV-1 and nearly 300-fold higher selectivity index (SI) compared to TAF. In human hepatocytes, the most efficient prodrugs exhibited subnanomolar EC50 values for HBV and up to 26-fold higher SI compared to TAF. Metabolic studies demonstrated markedly higher cellular uptake of the prodrugs and substantially higher levels of released tenofovir inside the cells compared to TAF. These promising results provide a strong foundation for further evaluation of the reported prodrugs and their potential utility in the development of highly potent antivirals.


Asunto(s)
Amidas/química , Antivirales/farmacología , Descubrimiento de Drogas , Ácidos Fosfóricos/química , Profármacos/farmacología , Tenofovir/farmacología , Antivirales/química , VIH-1/efectos de los fármacos , Virus de la Hepatitis B/efectos de los fármacos , Hepatocitos/virología , Humanos , Pruebas de Sensibilidad Microbiana , Fenol/química , Profármacos/química , Estereoisomerismo , Tenofovir/química , Tirosina/química
10.
Anticancer Res ; 33(8): 3163-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23898074

RESUMEN

AIM: 6-Chloropurines substituted at position 9 with bicyclic skeletons represent promising chemotherapeutic agents. We explored the metabolism and membrane transport of 9-norbornyl-6-chloropurine (NCP) aiming to understand its mechanism of action. MATERIALS AND METHODS: The metabolism of NCP was studied in vitro in whole cells (CCRF-CEM), cellular extracts, subcellular fractions and purified enzymes. Transport experiments were conducted in Caco-2 cell monolayers. RESULTS: Three metabolites were identified, a glutathione conjugate (NCP-GS), NCP-cysteinylglycine and NCP-cysteine. Both glutathione-S-transferase inhibition and glutathione (GSH) depletion prevented metabolite formation and increased the cytotoxicity of NCP. Transepithelial transport (Caco-2) indicated good permeability, with Papp (12.6±0.3) ×10(-5) cm/s. Importantly, the drug induced glutathione depletion in treated cells and affected the activity of several GSH-dependent enzymes. CONCLUSION: The novel nucleoside analog NCP represents a promising orally available antileukemic agent, acting through lowering of GSH levels in tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glutatión/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/patología , Purinas/farmacología , Purinas/uso terapéutico , Antineoplásicos/química , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Humanos , Purinas/química , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA