Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35744970

RESUMEN

Pomegranate variety properties are important not only to demonstrate their diversity but also to satisfy the current market need for high-quality fruits. This study aims to characterize pomological and physico-chemical features as well as the antioxidant capacity of Moroccan local cultivars (Djeibi, Mersi, Sefri 1 and Sefri 2) compared to the imported ones (Mollar de Elche and Hicaz). The pomological characteristics of varieties were relatively diverse. The juice varieties (PJ) displayed a marketed variability in organoleptic and quality properties, such as the flavor, juice yield, and micro/macronutrients contents. Interrelationships among the analyzed properties and PJ varieties were investigated by principal component analysis (PCA). Dimension of the data set was reduced to two components by PCA accounting for 64.53% of the variability observed. The rinds varieties (PR) were studied for their total phenolics, flavonoids, and condensed tannins quantifications. PR varieties extracts exhibited different levels of free radical scavenging activity and local varieties revealed a greater potential with stability over time. The HPLC-DAD analyses of PR extracts revealed (+) catechin as the major compound, where the highest content was found for the local varieties. The SEC analysis showed the molecular weight distribution of phenolic compounds with a high size of condensed tannins formed by the polymerization of the catechin monomer. Given these properties, this research provides an easy selection of high-quality fruits as potential candidates for local market needs.


Asunto(s)
Catequina , Lythraceae , Granada (Fruta) , Proantocianidinas , Antioxidantes/química , Catequina/análisis , Frutas/química , Lythraceae/química , Marruecos , Fenoles/análisis , Extractos Vegetales/química , Proantocianidinas/análisis , Sensación
2.
ACS Omega ; 9(25): 27428-27437, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947794

RESUMEN

Recently, obtaining collagen films using a cross-linking technique has been a successful strategy. The current investigation used six cross-linker extracts (CE) from six different pomegranate varieties' byproducts to make and characterize collagen-tannin films using acid-soluble collagen (SC). The polymeric film has a yellow hue after CE incorporation. Fourier transform infrared spectroscopy assessed the impact of CE and its successful interaction within the matrix. The shifts verify different interactions between extracts and collagen functional groups, where they likely form new hydrogen bonds, retaining their helix structure without damaging the matrix. Scanning electron microscopy was used to analyze the morphology and fiber size. The average diameter of the fibers was found to be about 3.64 µm. Thermal behaviors (denaturation and degradation) were investigated by thermogravimetric analysis. The weight losses of cross-linked films increased by around 20% compared to non-cross-linked ones. This phenomenon was explained by the absence of telopeptide sections in the collagen helical structure, typically reinforced by lysine and hydroxylysine covalent linkages. Nanoscaled observations were also accomplished using transmission electron microscopy (TEM) on SC and SC-CE. The TEM analysis confirmed the CE polymerization degree effect on the cross-linking density via the overlap sequences, ranging up to 32.38 ± 2.37 nm on the fibril. The prepared biodegradable collagen-tannin film showed higher cross-linking density, which is expected to improve the biomaterial applications of collagen films while exploiting the underrated pomegranate byproducts.

3.
RSC Adv ; 12(7): 4175-4186, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425412

RESUMEN

An environmental approach for leather manufacturing is primordial to provide a global strategy towards more sustainable biomaterials and greener tanning processing methods. The ability of collagen as a principal component of skin to combine natural phenolic compounds, especially vegetable tannins, has been proven to be eco-friendly and manageable, while making good improvement to leather properties in the tanning process. In this study, we have used pomegranate phenolic compounds and insoluble collagen as a model system to examine the effects of tanning steps on the conformation of collagen. In detail, efficient modified extraction of pure insoluble collagen (IC) was presented. The IC was successfully identified using XRD, FTIR, SEM-EDS and TGA-DSC to verify the triple helix structure, morphology and thermal properties. As a result, the as-extracted collagen exhibits a high purity, preserving the triple helix collagen structure. Besides, the IC was modified using extracted pomegranate phenolic compounds, resulting in Crosslinked Insoluble Collagen (CIC). Characterization techniques were also performed to confirm the crosslinking process. Indeed, by comparing the FTIR vibrational spectra of IC and CIC, slight shifts of amide groups were observed, indicating the presence of inter and intramolecular interaction between IC functional groups and pomegranate phenolic compounds. Moreover, the morphology of CIC was changed. XRD analysis confirms collagen conformational integrity. Finally, thermal properties were improved. The temperature at 50% weight loss (T°50) increases from 344.54 °C to 375.53 °C. CIC multifunctionality allowed utilizing pomegranate phenolic compound extracts as a tanning agent in leather processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA