Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133271, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141313

RESUMEN

The extraordinary accumulation of cyanide ions within biological cells is a severe health risk. Detecting and tracking toxic cyanide ions within these cells by simple and ultrasensitive methodologies are of immense curiosity. Here, continuous tracking of ultimate levels of CN--ions in HeLa cells was reported employing biocompatible branching molecular architectures (BMAs). These BMAs were engineered by decorating colorant-laden dendritic branch within and around the molecular building hollows of the geode-shelled nanorods of organic-inorganic Al-frameworks. Batch-contact methods were utilized to assess the potential of hollow-nest architecture for inhibition/evaluation of toxicant CN--ions within HeLa cells. The nanorod BMAs revealed significant potential capabilities in monitoring and tracking of CN- ions (88 parts per trillion) in biological trials within seconds. These results demonstrated sufficient evidence for the compatibility of BMAs during HeLa cell exposure. Under specific conditions, the BMAs were utilized for in-vitro fluorescence tracking/sensing of CN- in HeLa cells. The cliff swallow nest with massive mouths may have the potential to reduce the health hazards associated with toxicant exposure in biological cells.


Asunto(s)
Estructuras Metalorgánicas , Humanos , Células HeLa , Iones , Cianuros , Sustancias Peligrosas
2.
J Hazard Mater ; 478: 135429, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128154

RESUMEN

Real-time monitoring and tracking of extreme toxins that penetrate into living cells by using biocompatible, low-cost visual detection via fluorescent monitors are vitally essential to reduce health hazards. Herein, we report a simple engineering design of biocompatible and fluorescent sensors/trackers for real-time monitoring and ultra-trace tracking (up to ppb) of extremely toxic substances (such as arsenic species) in living cells. The biocompatible As(V) sensor (BAS) design is fabricated via successful dressing/decoration process of 2-hydroxy 5-methyl isophthalaldehyde fluorescent receptor into hierarchical organic-inorganic carriers that have micro-hollow geodes, swirled caves and nest-shaped cages, and uniform cubic structures. The BAS monitors show evidence for the selective trapping/detecting/tracking of As(V) species in biological cells (i.e., HeLa cells) despite the coexistence of highly competitive and interfered species. Our simple batch-contact sensing assays shows real-space evidence of the continuous monitoring of As(V) species in HeLa cells with ultra-sensitive detection (i.e., with a low detection limit of 0.149 ppb) and rapid recognition (i.e., in the order of seconds). Significantly, the BAS monitors did not affect the cell population and achieved low cytotoxicity and high cell viability during the monitoring/tracking process inside HeLa cells. The high biocompatibility of BAS remarkably allows precise quantification and real-time monitoring/tracking of toxicant targets in living cells.


Asunto(s)
Arsénico , Colorantes Fluorescentes , Humanos , Células HeLa , Arsénico/análisis , Arsénico/toxicidad , Colorantes Fluorescentes/química , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA