Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Microbiol ; 26(4): e16612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622804

RESUMEN

Beauveria brongniartii is a fungal pathogen that infects the beetle Melolontha melolontha, a significant agricultural pest in Europe. While research has primarily focused on the use of B. brongniartii for controlling M. melolontha, the genomic structure of the B. brongniartii population remains unknown. This includes whether its structure is influenced by its interaction with M. melolontha, the timing of beetle-swarming flights, geographical factors, or reproductive mode. To address this, we analysed genome-wide SNPs to infer the population genomics of Beauveria spp., which were isolated from infected M. melolontha adults in an Alpine region. Surprisingly, only one-third of the isolates were identified as B. brongniartii, while two-thirds were distributed among cryptic taxa within B. pseudobassiana, a fungal species not previously recognized as a pathogen of M. melolontha. Given the prevalence of B. pseudobassiana, we conducted analyses on both species. We found no spatial or temporal genomic patterns within either species and no correlation with the population structure of M. melolontha, suggesting that the dispersal of the fungi is independent of the beetle. Both species exhibited clonal population structures, with B. brongniartii fixed for one mating type and B. pseudobassiana displaying both mating types. This implies that factors other than mating compatibility limit sexual reproduction. We conclude that the population genomic structure of Beauveria spp. is primarily influenced by predominant asexual reproduction and dispersal.


Asunto(s)
Beauveria , Escarabajos , Animales , Beauveria/genética , Escarabajos/microbiología , Genómica
2.
Microb Ecol ; 86(3): 1947-1960, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36849610

RESUMEN

Combining different biocontrol agents (BCA) is an approach to increase efficacy and reliability of biological control. If several BCA are applied together, they have to be compatible and ideally work together. We studied the interaction of a previously selected BCA consortium of entomopathogenic pseudomonads (Pseudomonas chlororaphis), nematodes (Steinernema feltiae associated with Xenorhabdus bovienii), and fungi (Metarhizium brunneum). We monitored the infection course in a leaf- (Pieris brassicae) and a root-feeding (Diabrotica balteata) pest insect after simultaneous application of the three BCA as well as their interactions inside the larvae in a laboratory setting. The triple combination caused the highest mortality and increased killing speed compared to single applications against both pests. Improved efficacy against P. brassicae was mainly caused by the pseudomonad-nematode combination, whereas the nematode-fungus combination accelerated killing of D. balteata. Co-monitoring of the three BCA and the nematode-associated Xenorhabdus symbionts revealed that the four organisms are able to co-infect the same larva. However, with advancing decay of the cadaver there is increasing competition and cadaver colonization is clearly dominated by the pseudomonads, which are known for their high competitivity in the plant rhizosphere. Altogether, the combination of the three BCA increased killing efficacy against a Coleopteran and a Lepidopteran pest which indicates that this consortium could be applied successfully against a variety of insect pests.


Asunto(s)
Control Biológico de Vectores , Rabdítidos , Animales , Reproducibilidad de los Resultados , Insectos , Larva/microbiología , Rabdítidos/microbiología , Hojas de la Planta
3.
J Invertebr Pathol ; 197: 107891, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716929

RESUMEN

The natural occurrence of entomopathogenic fungi (EPF) was investigated along the Ticino River (Ticino River Natural Park, Novara Province, Piedmont, Italy), at the center of the area of the first settlement of the invasive alien pest Popillia japonica. Using Zimmermann's "Galleria bait method", EPF were successfully isolated from 83 out of 155 soil samples from different habitats (perennial, cultivated, or uncultivated meadows, woodlands, and riverbanks). Sequencing of the 5' end of the Translation Elongation Factor 1 alfa (5'-TEF) region allowed the assignment of 94% of the isolates to Metarhizium spp., while 8% and 7% were assigned to Beauveria spp. and Paecilomyces spp., respectively. Four Metarhizium species were identified: Metarhizium robertsii was the most common one (61.5% of the isolates), followed by M. brunneum (24.4%), M. lepidiotae (9%), and M. guizhouense (5.1%). Microsatellite marker analysis of the Metarhizium isolates revealed the presence of 27 different genotypes, i.e., 10 genotypes among M. robertsii, 8 among M. brunneum, 5 among M. lepidiotae, and 4 among M. guizhouense. Metarhizium brunneum appeared to be associated with woodlands and more acid soils, while the other species showed no clear association with a particular habitat. Laboratory virulence tests against P. japonica 3rd instar larvae allowed the identification of one M. robertsii isolate that showed efficacy as high as 80.3%. The importance of this kind of study in the frame of eco-friendly microbiological control is discussed.


Asunto(s)
Beauveria , Escarabajos , Metarhizium , Animales , Microbiología del Suelo , Escarabajos/microbiología , Larva/microbiología , Ecosistema , Control Biológico de Vectores
4.
Risk Anal ; 43(10): 1921-1932, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36693350

RESUMEN

Genetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non-targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co-occur in the area of release and its expected dispersal. Using the invasive spotted-wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.


Asunto(s)
Drosophila , Tecnología de Genética Dirigida , Animales , Drosophila/genética , Ecosistema , Control de Insectos
5.
Mol Ecol ; 30(17): 4305-4320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160856

RESUMEN

Despite the importance of soil microorganisms for ecosystem services, long-term surveys of their communities are largely missing. Using metabarcoding, we assessed temporal dynamics of soil bacterial and fungal communities in three land-use types, i.e., arable land, permanent grassland, and forest, over five years. Soil microbial communities remained relatively stable and differences over time were smaller than those among sites. Temporal variability was highest in arable soils. Indications for consistent shifts in community structure over five years were only detected at one site for bacteria and at two sites for fungi, which provided further support for long-term stability of soil microbial communities. A sliding window analysis was applied to assess the effect of OTU abundance on community structures. Partial communities with decreasing OTU abundances revealed a gradually decreasing structural similarity with entire communities. This contrasted with the steep decline of OTU abundances, as subsets of rare OTUs (<0.01%) revealed correlations of up to 0.97 and 0.81 with the entire bacterial and fungal communities. Finally, 23.4% of bacterial and 19.8% of fungal OTUs were identified as scarce, i.e., neither belonging to site-cores nor correlating to environmental factors, while 67.3% of bacterial and 64.9% of fungal OTUs were identified as rare but not scarce. Our results demonstrate high stability of soil microbial communities in their abundant and rare fractions over five years. This provides a step towards defining site-specific normal operating ranges of soil microbial communities, which is a prerequisite for detecting community shifts that may occur due to changing environmental conditions or anthropogenic activities.


Asunto(s)
Microbiota , Micobioma , Bacterias/genética , Hongos/genética , Microbiota/genética , Micobioma/genética , Suelo , Microbiología del Suelo
6.
Bull Entomol Res ; 111(5): 511-516, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33461630

RESUMEN

The European (Melolontha melolontha L.) and Forest (M. hippocastani F.) cockchafer are widespread pests throughout Central Europe. Both species exhibit a 3-5-year life cycle and occur in temporally shifted populations, which have been monitored and documented for more than 100 years. Visual identification of adults and larvae belonging to these morphologically similar species requires expertise and, particularly in the case of larvae, is challenging and equivocal. The goal of the study was the development of an efficient and fast molecular genetic tool for the identification and discrimination of M. melolontha and M. hippocastani. We established a collection of both species from Switzerland, Austria and Northern Italy in 2016, 2017 and 2018. An approximately 1550 bp long fragment of the cytochrome c oxidase subunit 1 (CO1) mitochondrial gene was amplified and sequenced in 13 M. melolontha and 13 M. hippocastani beetles. Alignment of the new sequences with reference sequences (NCBI GenBank and BOLDSYSTEMS databases) and subsequent phylogenetic analysis revealed consistent clustering of the two species. After the identification of M. melolontha and M. hippocastani species-specific single nucleotide polymorphisms (SNPs) in the CO1 alignment, we developed an effective SNP tool based on the ABI PRISM® SNaPshot™ Multiplex Kit for the rapid and accurate species discrimination of adults and larvae.


Asunto(s)
Escarabajos/clasificación , Escarabajos/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Europa (Continente) , Genes Mitocondriales/genética , Larva/clasificación , Larva/genética , Filogenia , Especificidad de la Especie
7.
J Invertebr Pathol ; 161: 23-28, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30641044

RESUMEN

The fungal species Metarhizium pingshaense, M. anisopliae, M. robertsii, and M. brunneum, a monophyletic group informally referred to as the PARB species complex, are well known facultative entomopathogens, including many commercialized strains used for biological pest control. Accurate and expedient species identification of Metarhizium isolates represents an important first step when addressing ecological as well as application-related questions involving these fungi. To this end, a species-specific multiplexed polymerase chain reaction (PCR) assay was developed for identification and discrimination among Metarhizium PARB complex species, based on unique sequence signature differences within the nuclear ribosomal intergenic spacer (rIGS) and nuclear intergenic spacer regions MzFG546 and MzIGS2. Species-specificities of the four primer pairs were assessed following a three-step approach including: (1) in silico verification of sequence signatures by BLASTN searches against publically available genome and amplicon sequence data, (2) corroboration of assay specificity and robustness by performing test PCR amplifications against a taxonomically curated reference strain collection of 68 Metarhizium strains representing 12 species, and (3) testing against a field collection of 19 unknown Metarhizium isolates from soil of a Swiss meadow. The specificity of these four primer pairs provide an efficient means to detect and discriminate PARB species in studies targeting ecological aspects of indigenous isolates, as well as efficacy, persistence and potential non-target effects of applied biocontrol strains.


Asunto(s)
Metarhizium/clasificación , Simulación por Computador , Cartilla de ADN , ADN de Hongos/genética , ADN Intergénico/genética , Metarhizium/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Control Biológico de Vectores , Filogenia , Microbiología del Suelo
8.
J Invertebr Pathol ; 141: 6-17, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27693652

RESUMEN

The response of entomopathogenic mitosporic ascomycete (EMAs) to abiotic stresses might be adapted to the microhabitats in which they inhabit. In phylloplane, these organisms are more exposed to such stresses than they are in soil, which may have led to adaptation to this environment. In the present work, we investigate whether Beauveria bassiana genotype or isolation habitat, i.e., soil or phylloplane, within the same geographic area influences their responses to key environmental stresses, such as temperature, moisture and ultraviolet radiation (UV-B), which can affect their successful use in microbial control. Twenty isolates of B. bassiana obtained from the soil and phylloplane in two ecosystems from southern Spain (holm oak dehesa and a reforested area) were selected to study the population distribution of these isolates and evaluate their thermal, humidity and UV-B requirements. Molecular characterization was conducted by using elongation factor-1α (EF-1α), the intergenic nuclear region Bloc and 15 microsatellite primers. The cluster analysis based on concatenated EF-1α and Bloc sequences grouped the 20 isolates into five clades within B. basiana, with Clades a, b, d and e containing both soil and phylloplane isolates and Clade c including three phylloplane isolates. The dendrogram and the minimal spanning network generated from the genetic distances among multilocus genotypes showed four divergent groups corresponding to the five clades obtained based on the sequence data (Clades b and d were represented in the same group), with a high degree of shared alleles within groups and few alleles shared among groups. Although no relationship was found between MLG and the habitat (soil or phylloplane) of isolation, isolates grouped into Clade c, all of which were collected from phylloplane, formed a separate group of MLGs. To investigate our hypothesis, the responses to temperature (germination and colony growth evaluated in the range 15-35°C), water activity (conidia germination evaluated against values of aw between 1 and 0.862) and UV-B exposure (conidia exposed to 920 or 1200mWm-2 for 2, 4 or 6h) of the soil and phylloplane isolates from the five clades were investigated. No associations of isolate-specific genetic or physiological characteristics with isolate habitat, i.e., soil or phylloplane, were found. These results provide no support for the hypothesis that EMAs strains from the phylloplane have evolved to resist unfavourable environmental conditions.


Asunto(s)
Adaptación Fisiológica/fisiología , Beauveria/fisiología , Ecosistema , Quercus/microbiología , Microbiología del Suelo , Genotipo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Estrés Fisiológico
9.
J Invertebr Pathol ; 132: 132-134, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26407949

RESUMEN

Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium strains including all 54 used in a recent phylogenetic revision of the genus were characterized. Between 15 and 34 polymorphic SSR markers produced scorable PCR amplicons in seven species, including M. anisopliae, M. brunneum, M. guizhouense, M. lepidiotae, M. majus, M. pingshaense, and M. robertsii. To provide genotyping tools for concurrent analysis of these seven species fifteen markers grouped in five multiplex pools were selected based on high allelic diversity and easy scorability of SSR chromatograms.


Asunto(s)
Metarhizium/genética , Repeticiones de Microsatélite , Variación Genética , Técnicas de Genotipaje , Filogenia , Análisis de Secuencia de ADN
10.
J Invertebr Pathol ; 132: 142-148, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26407950

RESUMEN

Metarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark. Thirty-six root samples from each of the three crops were collected within an area of approximately 3ha. The roots were rinsed with sterile water, homogenized and the homogenate plated onto selective media. A subset of 126 Metarhizium isolates were identified to species by sequencing of the 5' end of the gene translation elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed that six multilocus genotypes (MLGs) were present among the M. brunneum and M. robertsii isolates, respectively. A single MLG of M. brunneum represented 66.7%, 79.1% and 79.2% of the total isolates obtained from oat, rye and cabbage, respectively. The isolation of Metarhizium spp. and their MLGs from roots revealed a comparable community composition as previously reported from the same agroecosystem when insect baiting of soil samples was used as isolating technique. No specific MLG association with a certain crop was found. This study highlights the diversity of Metarhizium spp. found in the rhizosphere of different crops within a single agroecosystem and suggests that plants either recruit fungal associates from the surrounding soil environment or even govern the composition of Metarhizium populations.


Asunto(s)
Metarhizium/aislamiento & purificación , Microbiología del Suelo , Avena/microbiología , Brassica/microbiología , ADN de Hongos/química , Especificidad del Huésped , Metarhizium/genética , Metarhizium/fisiología , Repeticiones de Microsatélite , Raíces de Plantas/microbiología , Secale/microbiología , Análisis de Secuencia de ADN
11.
J Invertebr Pathol ; 123: 6-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25224815

RESUMEN

The entomopathogenic fungal Metarhizium anisopliae lineage harbors cryptic diversity and was recently split into several species. Metarhizium spp. are frequently isolated from soil environments, but the abundance and distribution of the separate species in local communities is still largely unknown. Entomopathogenic isolates of Metarhizium spp. were obtained from 32 bulked soil samples of a single agroecosystem in Denmark using Tenebrio molitor as bait insect. To assess the Metarhizium community in soil from the agricultural field and surrounding hedgerow, 123 isolates were identified by sequence analysis of 5' end of elongation factor 1-α and their genotypic diversity characterized by multilocus simple sequence repeat (SSR) typing. Metarhizium brunneum was most frequent (78.8%) followed by M. robertsii (14.6%), while M. majus and M. flavoviride were infrequent (3.3% each) revealing co-occurrence of at least four Metarhizium species in the soil of the same agroecosystem. Based on SSR fragment length analysis five genotypes of M. brunneum and six genotypes of M. robertsii were identified among the isolates. A single genotype within M. brunneum predominated (72.3% of all genotypes) while the remaining genotypes of M. brunneum and M. robertsii were found at low frequencies throughout the investigated area indicating a diverse Metarhizium community. The results may indicate potentially favorable adaptations of the predominant M. brunneum genotype to the agricultural soil environment.


Asunto(s)
Metarhizium/genética , Microbiología del Suelo , Genotipo
12.
Evol Appl ; 16(9): 1586-1597, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37752964

RESUMEN

The European cockchafer Melolontha melolontha is an agricultural pest in many European countries. Populations have a synchronized 3 or 4 years life cycle, leading to temporally isolated populations. Despite the economic importance and availability of comprehensive historical as well as current records on cockchafer occurrence, population genomic analyses of M. melolontha are missing. For example, the effects of geographic separation caused by the mountainous terrain of the Alps and of temporal isolation on the genomic structure of M. melolontha still remain unknown. To address this gap, we genotyped 475 M. melolontha adults collected during 3 years from 35 sites in a central Alpine region. Subsequent population structure analyses discriminated two main genetic clusters, i.e., the South Tyrol cluster including collections located southeast of the Alpine mountain range, and a northwestern alpine cluster with all the other collections, reflecting distinct evolutionary history and geographic barriers. The "passo di Resia" linking South and North Tyrol represented a regional contact zone of the two genetic clusters, highlighting genomic differentiation between the collections from the northern and southern regions. Although the collections from northwestern Italy were assigned to the northwestern alpine genetic cluster, they displayed evidence of admixture with the South Tyrolean genetic cluster, suggesting shared ancestry. A linear mixed model confirmed that both geographic distance and, to a lower extent, also temporal isolation had a significant effect on the genetic distance among M. melolontha populations. These effects may be attributed to limited dispersal capacity and reproductive isolation resulting from synchronized and non-synchronized swarming flights, respectively. This study contributes to the understanding of the phylogeography of an organism that is recognized as an agricultural problem and provides significant information on the population genomics of insect species with prolonged temporally shifted and locally synchronized life cycles.

13.
Pathogens ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678445

RESUMEN

The mass occurrence of the sugar beet weevil (Asproparthenis punctiventris, previously Bothynoderes punctiventris) has been endangering sugar beet cultivation in Austria for centuries. Exacerbated by climatic and political changes (warmer, drier spring and limited access to chemical pesticides), new approaches are needed to counter the problem. The aim of our work was to test whether the bioinsecticide Metarhizium brunneum Ma 43 (formerly M. anisopliae var. anisopliae BIPESCO 5/F52) can be used as a sustainable plant protection product against the sugar beet weevil. Our goal was to control the pest in all its development stages through multiple applications. Therefore, GranMetTM-P, a granular formulation of M. brunneum Ma 43, was applied in spring to establish the fungus in the soil, whereas GranMetTM-WP, a liquid formulation of the production strain, was used in early summer on trap ditches and leaves to target the adult weevils. Soil and plant samples as well as weevils were collected during the planting season from the trial sites to evaluate the development of the fungus and the mycosis of the treated weevils. In addition, data on hibernating weevils and their emigration from untreated field sites was collected. In all field sites, the Metarhizium spp. abundance increased above the background level (<1000 CFU g−1 soil dry weight) after application of the product. With an increasing number of treatments per plot, and thus an increased contact possibility between pest and the fungus, a rise in the mycosis rate was observed. In conclusion, the various Metarhizium application strategies, which are already available or in testing, must be implemented to ensure control in both old and new sugar beet fields. Metarhizium is a further asset in the successful control of this sugar beet pest.

14.
J Invertebr Pathol ; 109(1): 76-82, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22008375

RESUMEN

Pollen beetles Meligethes aeneus were collected in oilseed rape fields at different sites in Switzerland in spring 2004-2005 and 32 isolates of the fungal genus Beauveria occurring as latent infections in the beetles were obtained and molecularly characterized. Three major clades, Beauveria bassiana sensu stricto (Clade A: n=13), Beauveriabrongniartii (Clade B: n=1) and Beauveria Clade C (n=18) were identified among the isolates based on sequences of the ITS region and the 5' end of EF1-α. B. bassiana s.s. was further separated in the two clades, Eu_1 (n=10) and Eu_4 (n=3). The intergenic region Bloc provided best resolution of the individual clades B. bassiana s.s. Eu_1, Eu_4 and B. brongniartii. No specific clade of Beauveria appeared to be associated with adult M. aeneus populations. However, data suggested high relative abundance of Beauveria Clade C among the fungal entomopathogens infecting M. aeneus. Characterization of the isolates by simple sequence repeats (SSR) revealed further genotypic diversity within the clades except B. bassiana s.s. Eu_4 which appeared to be clonal. However, the individual SSR markers were differentially amplifiable from isolates of the different clades. It is therefore important to identify the underlying phylogenetic affinity of Beauveria isolates to interpret results based on SSR markers. The data suggest that not all available SSR markers are suitable for reliable characterization of diversity within Beauveria Clade C.


Asunto(s)
Beauveria/aislamiento & purificación , Escarabajos/microbiología , Micosis/microbiología , Control de Plagas , Animales , Beauveria/genética , Biodiversidad , Evolución Biológica , Escarabajos/fisiología , Variación Genética , Especificidad del Huésped , Interacciones Huésped-Patógeno , Repeticiones de Microsatélite/genética , Suiza
15.
FEMS Microbiol Ecol ; 97(12)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34940884

RESUMEN

Soil microbial diversity has major influences on ecosystem functions and services. However, due to its complexity and uneven distribution of abundant and rare taxa, quantification of soil microbial diversity remains challenging and thereby impeding its integration into long-term monitoring programs. Using metabarcoding, we analyzed soil bacterial and fungal communities at 30 long-term soil monitoring sites from the three land-use types arable land, permanent grassland, and forest with a yearly sampling between snowmelt and first fertilization over five years. Unlike soil microbial biomass and alpha-diversity, microbial community compositions and structures were site- and land-use-specific with CAP reclassification success rates of 100%. The temporally stable site core communities included 38.5% of bacterial and 33.1% of fungal OTUs covering 95.9% and 93.2% of relative abundances. We characterized bacterial and fungal core communities and their land-use associations at the family-level. In general, fungal families revealed stronger land-use associations as compared to bacteria. This is likely due to a stronger vegetation effect on fungal core taxa, while bacterial core taxa were stronger related to soil properties. The assessment of core communities can be used to form cultivation-independent reference lists of microbial taxa, which may facilitate the development of microbial indicators for soil quality and the use of soil microbiota for long-term soil biomonitoring.


Asunto(s)
Microbiota , Suelo , Bacterias/genética , Hongos/genética , Humanos , Microbiología del Suelo
16.
Microorganisms ; 9(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202058

RESUMEN

Species of the fungal genus Metarhizium are globally distributed pathogens of arthropods, and a number of biological control products based on these fungi have been commercialized to control a variety of pest arthropods. In this study, we investigate the abundance and population structure of Metarhizium spp. in three land-use types-arable land, grassland, and forest-to provide detailed information on habitat selection and the factors that drive the occurrence and abundance of Metarhizium spp. in soil. At 10 sites of each land-use type, which are all part of the Swiss national soil-monitoring network (NABO), Metarhizium spp. were present at 8, 10, and 4 sites, respectively. On average, Metarhizium spp. were most abundant in grassland, followed by forest and then arable land; 349 Metarhizium isolates were collected from the 30 sites, and sequence analyses of the nuclear translation elongation factor 1α gene, as well as microsatellite-based genotyping, revealed the presence of 13 Metarhizium brunneum, 6 Metarhizium robertsii, and 3 Metarhizium guizhouense multilocus genotypes (MLGs). With 259 isolates, M. brunneum was the most abundant species, and significant differences were detected in population structures between forested and unforested sites. Among 15 environmental factors assessed, C:N ratio, basal respiration, total carbon, organic carbon, and bulk density significantly explained the variation among the M. brunneum populations. The information gained in this study will support the selection of best-adapted isolates as biological control agents and will provide additional criteria for the adaptation or development of new pest control strategies.

17.
J Microbiol Methods ; 178: 106069, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33007337

RESUMEN

Amplicon sequencing allows for simultaneous assessment of inoculation success and responses of indigenous communities after microbial inoculation. However, the presence of a highly dominant taxon may bias correct assessment of communities due to dilution effects, chimera formation, or preferential amplification. Here, we present a simple test to assess these biases.

18.
Mycol Res ; 113(Pt 9): 1016-24, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19540917

RESUMEN

Thirty-three Metarhizium anisopliae isolates sampled across Switzerland as well as 35 and 36 M. anisopliae isolates sampled from two field sites were assembled in three isolate collections. All isolates were analyzed using 27 newly developed and 14 previously published microsatellite markers. The 41 markers allowed for detection of 25 genotypes in the Swiss collection while 30 and 11 genotypes were detected in the two field collections. This indicated high genetic diversity on a regional as well as on a field scale. In order to improve genotyping efficiency, an optimized marker set, which allows discrimination of a large number of genotypes with as few markers as possible was developed. The optimized marker set consisted of 16 common markers, which provided resolution close to maximal resolution in all three collections (91-93 %). The results demonstrated that optimized marker sets have to be validated before large scale application to previously unassessed collections in order to avoid suboptimal resolution. This genetic tool will be valuable for analyses of genetic population structure of M. anisopliae in different habitats on a regional as well as on a field scale.


Asunto(s)
ADN de Hongos/genética , Variación Genética , Metarhizium/genética , Repeticiones de Microsatélite , ADN de Hongos/aislamiento & purificación , Genes Fúngicos , Marcadores Genéticos , Metarhizium/aislamiento & purificación , Análisis de Secuencia de ADN , Especificidad de la Especie , Suiza
19.
J Invertebr Pathol ; 102(2): 185-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19682457

RESUMEN

A new genotyping tool has been developed and evaluated for Metarhizium anisopliae var. anisopliae. The tool is based on Restriction Fragment Length Polymorphism (RFLP) analysis of three chitinase genes that are functionally linked to insect-pathogenicity of this fungus. It allowed for discrimination of 14 genotypes among 22 M. anisopliae var. anisopliae strains of a world wide collection. Analyses revealed that the approach may also be applicable to other Metarhizium varieties. The new tool will be useful for genetic characterization of M. anisopliae var. anisopliae strains, and it is applicable for laboratories with limited access to molecular diagnostic equipment.


Asunto(s)
Quitinasas/genética , Metarhizium/enzimología , Metarhizium/genética , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Animales , Clasificación , ADN de Hongos/genética , Variación Genética , Genotipo , Control de Insectos/métodos , Metarhizium/clasificación , Control Biológico de Vectores/métodos , Microbiología del Suelo , Especificidad de la Especie
20.
J Microbiol Methods ; 68(2): 358-66, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17084474

RESUMEN

Soil fungal community structures are often highly heterogeneous even among samples taken from small field plots. Sample pooling is widely used in order to overcome this heterogeneity, however, no objective criteria have yet been defined on how to determine the number of samples to be pooled for representatively profiling a field plot. In the present study PCR/RFLP and T-RFLP analysis of fungal 18S rDNA in ten soil samples obtained from a grassland plot of 400 m(2) also revealed this known heterogeneity in fungal community structures. Based on these data a three-step approach to assess representativity of fungal community profiles was established. First, soil DNA quantities needed for robust community profiling were determined. Second, profiles of single or multiple samples were theoretically averaged to test for statistically significant clustering in order to determine the minimal number of samples to be pooled to achieve representativity. Third, DNA extracts of single or multiple samples were pooled prior to profiling in order to test for statistically significant clustering. Analyses revealed robust profiles for 50 ng soil DNA but not for 5 ng. Averaged T-RFLP profiles from five or more soil samples and experimental T-RFLP profiles from pools of seven or more samples formed one significant branch. Theoretical averaging and experimental pooling revealed that five to seven samples have to be pooled for robustly representing the field plot. Our results demonstrate that representativity of soil fungal community profiles can objectively be determined for a field plot with only little deviation between theoretical and experimental approaches. This three-step approach will be of assistance for designing sampling and pooling strategies for comparative analyses of soil fungal communities in ecological studies.


Asunto(s)
Ecosistema , Hongos/genética , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 18S/genética , Microbiología del Suelo , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , Hongos/aislamiento & purificación , Variación Genética , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 18S/química , Reproducibilidad de los Resultados , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA