Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(8): 3368-3380, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36795094

RESUMEN

Most photodynamic therapeutics (PDTs) used in cancer treatment require oxygen to work efficiently to terminate cancer cells. These PDTs do not efficiently treat tumors in hypoxic conditions. Rh(III) polypyridyl complexes have been reported to have a photodynamic therapeutic effect in hypoxic conditions when exposed to UV light. UV light can damage tissue and cannot penetrate deep to reach cancer cells. This work proposes the coordination of a BODIPY fluorophore to a rhodium metal center to form a Rh(III)-BODIPY complex that enhances the reactivity of the rhodium under visible light. This complex formation is facilitated with the BODIPY as the highest occupied molecular orbital (HOMO), while the lowest unoccupied molecular orbital (LUMO) is localized on the Rh(III) metal center. Irradiation of the BODIPY transition at ∼524 nm can cause an indirect electron transfer from the orbital of the BODIPY-centered HOMO to the Rh(III)-centered LUMO, populating the dσ* orbital. In addition, photo binding of the Rh complex covalently coordinated to the N (7) position of guanine in an aqueous solution was also observed by mass spectrometry after chloride dissociation upon irradiation with green visible light (532 nm LED). Calculated thermochemistry values of the Rh complex reaction in methanol, acetonitrile, water, and guanine were determined using DFT calculations. All enthalpic reactions and Gibbs free energies were identified as endothermic and nonspontaneous, respectively. This observation supports the chloride dissociation using 532 nm light. This Rh(III)-BODIPY complex expands the class of visible light-activated Rh(III) photocisplatin analogs that may have potential photodynamic therapeutic activity for the treatment of cancers in hypoxic conditions.


Asunto(s)
Neoplasias , Rodio , Humanos , Rodio/química , Guanina , Cloruros , Luz
2.
Langmuir ; 36(1): 180-193, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31838850

RESUMEN

Sensing in molecularly imprinted polymers (MIPs) requires specific interactions of the imprinted polymer and the approaching template molecule. These interactions are affected by the morphology of the polymer surface, the affinity of the template molecule to the polymer network, and the steric approach. In this particular study, a template molecule, metronidazole, is studied with respect to the typically used methacrylic acid-based imprinted polymer using a combination of bulk and surface techniques. The resulting infrared (IR) spectra exhibited the presence of the template molecule in the polymer matrix as well as their efficient removal after washing. Dipping of the MIP according to what is expected of facile sensing in an aqueous solution of metronidazole did not show any presence of the template molecule in the bulk of the MIP, as observed by IR spectroscopy. However, using sum frequency generation (SFG) spectroscopy, the CH aromatic stretch of the imidazole ring positioned at ∼3100 cm-1 was observed at the polymer surface, including its inner pores or cavities, and at the buried polymer-fused silica interface after dipping. SFG studies have also shown the vibrational signatures of the polymer matrix, the presence of the template molecule on the surface, and the detection of residual template molecules after washing. Increasing the washing time to 50 min has proven to be less effective than increasing the washing cycles to three. However, after the third cycle, reorganization of the polymer matrix was evident as also the complete removal of the template molecule. The observed changes from the acquired images using scanning electron microscopy and atomic force microscopy show the structural morphologies of MIPs and a good distribution of the pores across the MIP surface. The study demonstrates the importance of combining both bulk and surface characterization in providing insight into the template molecule-polymer network interactions.

3.
Langmuir ; 34(43): 12680-12693, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30300547

RESUMEN

Successive surface reactions on hydrophilic silica substrates were designed and performed to immobilize ethanolamine-modified magnetic ferrite-based nanoparticle (NP) for surface characterization. The various surfaces were monitored using sum-frequency generation (SFG) spectroscopy. The surface of the hydrophilic quartz substrate was first converted to a vinyl-terminated surface by utilizing a silanization reaction, and then, the surface functional groups were converted to carboxylic-terminated groups via a thiol-ene reaction. The appearance and disappearance of the vinyl (═CH2) peak at ∼2990 cm-1 in the SFG spectra were examined to confirm the success of the silanization and thiol-ene reactions, respectively. Acyl chloride (-COCl) formation from carboxy (-COOH) functional group was then performed for further attachment of magnetic amine-functionalized magnesium ferrite nanoparticles (NPs) via amide bond formation. The scattered NPs attached on the modified silica substrate was then used to study the changes in the spectral profile of the ethanolamine modifier of the NPs for in situ lead(II) (Pb2+) adsorption at the solid-liquid interface using SFG spectroscopy. However, due to the limited number of NPs attached and sensitivity of SFG spectroscopy toward expected change in the modifier spectroscopically, no significant change was observed in the SFG spectrum of the modified silica with magnetic NPs during exposure to Pb2+ solution. Nevertheless, SFG spectroscopy as a surface technique successfully monitored the modifications from a clean fused substrate to -COCl formation that was used to immobilize the decorated magnetic nanoparticles. The method developed in this study can provide a reference for many surface or interfacial studies important for selective attachment of adsorbed organic or inorganic materials or particles.

4.
Materials (Basel) ; 16(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37176291

RESUMEN

Nitrogen-doped graphene quantum dots (NGQDs) have gained significant attention due to their various physical and chemical properties; however, there is a gap in the study of NGQDs' magnetic properties. This work adds to the efforts of bridging the gap by demonstrating the room temperature paramagnetism in GQDs doped with Nitrogen up to 3.26 at.%. The focus of this experimental work was to confirm the paramagnetic behavior of metal free NGQDs resulting from the pyridinic N configuration in the GQDs host. Metal-free nitrogen-doped NGQDs were synthesized using glucose and liquid ammonia as precursors by microwave-assisted synthesis. This was followed by dialysis filtration. The morphology, optical, and magnetic properties of the synthesized NGQDs were characterized carefully through atomic force microscopy (AFM), transmission electron microscopy (TEM)), UV-VIS spectroscopy, fluorescence, X-ray photon spectroscopy (XPS), and vibrating sample magnetometer (VSM). The high-resolution TEM analysis of NGQDs showed that the NGQDs have a hexagonal crystalline structure with a lattice fringe of ~0.24 nm of (1120) graphene plane. The N1s peak using XPS was assigned to pyridinic, pyrrolic, graphitic, and oxygenated NGQDs. The magnetic study showed the room-temperature paramagnetic behavior of NGQDs with pyridinic N configuration, which was found to have a magnetization of 20.8 emu/g.

5.
J Am Chem Soc ; 132(46): 16432-41, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21033708

RESUMEN

Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.


Asunto(s)
Alquinos/química , Silicio/química , Alquilación , Bacterias/química , Técnicas Biosensibles , Manosa/química , Análisis por Micromatrices , Microscopía de Fuerza Atómica , Estructura Molecular , Propiedades de Superficie
6.
Chem Sci ; 8(3): 2107-2114, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28348729

RESUMEN

We demonstrated that copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction could be performed inside live mammalian cells without using a chelating azide. Under optimized conditions, the reaction was performed in human ovary cancer cell line OVCAR5 in which newly synthesized proteins were metabolically modified with homopropargylglycine (HPG). This model system allowed us to estimate the efficiency of the reaction on the cell membranes and in the cytosol using mass spectrometry. We found that the reaction was greatly promoted by a tris(triazolylmethyl)amine CuI ligand tethering a cell-penetrating peptide. Uptake of the ligand, copper, and a biotin-tagged azide in the cells was determined to be 69 ± 2, 163 ± 3 and 1.3 ± 0.1 µM, respectively. After 10 minutes of reaction, the product yields on the membrane and cytosolic proteins were higher than 18% and 0.8%, respectively, while 75% cells remained viable. By reducing the biothiols in the system by scraping or treatment with N-ethylmalemide, the reaction yield on the cytosolic proteins was greatly improved to ~9% and ~14%, respectively, while the yield on the membrane proteins remained unchanged. The results indicate that out of many possibilities, deactivation of the current copper catalysts by biothiols is the major reason for the low yield of CuAAC reaction in the cytosol. Overall, we have improved the efficiency for CuAAC reaction on live cells by 3-fold. Despite the low yielding inside live cells, the products that strongly bind to the intracellular targets can be detected by mass spectrometry. Hence, the in situ CuAAC reaction can be potentially used for screening of cell-specific enzyme inhibitors or biomarkers containing 1,4-substituted 1,2,3-triazoles.

7.
ACS Appl Mater Interfaces ; 6(11): 8401-6, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24749832

RESUMEN

We show that coating of decellularized extracellular matrix (DC-ECM) on substrate surfaces is an efficient way to generate a platform mimicking the native ECM environment. Moreover, the DC-ECM can be modified with a peptide (QK) mimicking vascular endothelial growth factor without apparently compromising its integrity. The modification was achieved through metabolic incorporation of a "clickable" handle to DC-ECM followed by rapid attachment of the QK peptide with an azido tag using copper-catalyzed click reaction. The attachment of the QK peptide on to DC-ECM in this way further enhanced the angiogenic responses (formation of branched tubular networks) of endothelial cells.


Asunto(s)
Química Clic , Endotelio Vascular/citología , Matriz Extracelular/química , Imitación Molecular , Neovascularización Fisiológica , Péptidos/química , Factor A de Crecimiento Endotelial Vascular/química , Células Endoteliales de la Vena Umbilical Humana , Humanos
8.
ACS Appl Mater Interfaces ; 3(8): 2885-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21774463

RESUMEN

In this article, we present the first report on the antibacterial activity and cytotoxicity of poly(amidoamine) (PAMAM) dendrimers immobilized on three types of titanium-based substrates with and without calcium phosphate coating. We show that the amino-terminated PAMAM dendrimers modified with various percentages (0-60%) of poly(ethylene glycol) (PEG) strongly adsorbed on the titanium-based substrates. The resultant dendrimer films effectively inhibited the colonization of the Gram-negative bacteria Pseudomonas aeruginosa (strain PAO1) and, to a lesser extent, the Gram-positive bacteria Staphylococcus aureus (SA). The antibacterial activity of the films was maintained even after storage of the samples in PBS for up to 30 days. In addition, the dendrimer films had a low cytotoxicity to human bone mesenchymal stem cells (hMSCs) and did not alter the osteoblast gene expression promoted by the calcium phosphate coating.


Asunto(s)
Antiinfecciosos/química , Dendrímeros/química , Titanio/química , Antiinfecciosos/toxicidad , Fosfatos de Calcio/química , Células Cultivadas , Dendrímeros/toxicidad , Regulación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
9.
ACS Appl Mater Interfaces ; 3(2): 339-50, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21207950

RESUMEN

In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (ß-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.


Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Nanocompuestos/química , Titanio/química , Animales , Materiales Biocompatibles/farmacología , Fosfatos de Calcio/farmacología , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Durapatita/química , Rayos Láser , Ensayo de Materiales , Ratas , Reproducibilidad de los Resultados , Propiedades de Superficie , Temperatura , Titanio/farmacología , Difracción de Rayos X
10.
Chem Commun (Camb) ; 46(31): 5746-8, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20585691

RESUMEN

A versatile and stable liposomal platform is developed for rapid optimization of its peripheral composition. The platform is based on polydiacetylene lipids terminated with alkynyl groups. Conditions for copper-catalyzed azide-alkyne cycloaddition (a "click" reaction) are optimized for rapid attachment of azides with controlled composition onto the liposomes.


Asunto(s)
Liposomas/química , Alquinos/química , Animales , Azidas/química , Catálisis , Línea Celular Tumoral , Cobre/química , Microscopía Fluorescente , Polímero Poliacetilénico , Polímeros/química , Poliinos/química , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA