Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751557

RESUMEN

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Asunto(s)
Coinfección , Ostreidae , Animales , Humanos , Ecosistema , Bioensayo , Conducta Cooperativa
2.
Mar Drugs ; 20(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36547892

RESUMEN

Big defensins are two-domain antimicrobial peptides (AMPs) that have highly diversified in mollusks. Cg-BigDefs are expressed by immune cells in the oyster Crassostrea gigas, and their expression is dampened during the Pacific Oyster Mortality Syndrome (POMS), which evolves toward fatal bacteremia. We evaluated whether Cg-BigDefs contribute to the control of oyster-associated microbial communities. Two Cg-BigDefs that are representative of molecular diversity within the peptide family, namely Cg-BigDef1 and Cg-BigDef5, were characterized by gene cloning and synthesized by solid-phase peptide synthesis and native chemical ligation. Synthetic peptides were tested for antibacterial activity against a collection of culturable bacteria belonging to the oyster microbiota, characterized by 16S sequencing and MALDI Biotyping. We first tested the potential of Cg-BigDefs to control the oyster microbiota by injecting synthetic Cg-BigDef1 into oyster tissues and analyzing microbiota dynamics over 24 h by 16S metabarcoding. Cg-BigDef1 induced a significant shift in oyster microbiota ß-diversity after 6 h and 24 h, prompting us to investigate antimicrobial activities in vitro against members of the oyster microbiota. Both Cg-BigDef1 and Cg-BigDef5 were active at a high salt concentration (400 mM NaCl) and showed broad spectra of activity against bacteria associated with C. gigas pathologies. Antimicrobial specificity was observed for both molecules at an intra- and inter-genera level. Remarkably, antimicrobial spectra of Cg-BigDef1 and Cg-BigDef5 were complementary, and peptides acted synergistically. Overall, we found that primary sequence diversification of Cg-BigDefs has generated specificity and synergy and extended the spectrum of activity of this peptide family.


Asunto(s)
Crassostrea , Defensinas , Animales , Defensinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias/metabolismo
3.
BMC Genomics ; 21(1): 63, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959106

RESUMEN

BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


Asunto(s)
Crassostrea/genética , Crassostrea/microbiología , Animales , Crassostrea/inmunología , Crassostrea/metabolismo , Genes , RNA-Seq , Estrés Fisiológico/genética , Transcriptoma
4.
BMC Microbiol ; 20(1): 193, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620152

RESUMEN

BACKGROUND: Microbiome of macroorganisms might directly or indirectly influence host development and homeostasis. Many studies focused on the diversity and distribution of prokaryotes within these assemblages, but the eukaryotic microbial compartment remains underexplored so far. RESULTS: To tackle this issue, we compared blocking and excluding primers to analyze microeukaryotic communities associated with Crassostrea gigas oysters. High-throughput sequencing of 18S rRNA genes variable loops revealed that excluding primers performed better by not amplifying oyster DNA, whereas the blocking primer did not totally prevent host contaminations. However, blocking and excluding primers showed similar pattern of alpha and beta diversities when protist communities were sequenced using metabarcoding. Alveolata, Stramenopiles and Archaeplastida were the main protist phyla associated with oysters. In particular, Codonellopsis, Cyclotella, Gymnodinium, Polarella, Trichodina, and Woloszynskia were the dominant genera. The potential pathogen Alexandrium was also found in high abundances within some samples. CONCLUSIONS: Our study revealed the main protist taxa within oysters as well as the occurrence of potential oyster pathogens. These new primer sets are promising tools to better understand oyster homeostasis and disease development, such as the Pacific Oyster Mortality Syndrome (POMS) targeting juveniles.


Asunto(s)
Alveolados/clasificación , Crassostrea/parasitología , ARN Ribosómico 18S/genética , Estramenopilos/clasificación , Alveolados/genética , Alveolados/aislamiento & purificación , Animales , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN/métodos , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
5.
Fish Shellfish Immunol ; 77: 156-163, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567138

RESUMEN

Since 2008, juvenile Crassostrea gigas oysters have suffered from massive mortalities in European farming areas. This disease of complex etiology is still incompletely understood. Triggered by an elevated seawater temperature, it has been associated to infections by a herpes virus named OsHV-1 as well as pathogenic vibrios of the Splendidus clade. Ruling out the complexity of the disease, most of our current knowledge has been acquired in controlled experiments. Among the many unsolved questions, it is still ignored what role immunity plays in the capacity oysters have to survive an infectious episode. Here we show that juvenile oysters susceptible to the disease mount an inefficient immune response associated with microbial permissiveness and death. We found that, in contrast to resistant adult oysters having survived an earlier episode of mortality, susceptible juvenile oysters never exposed to infectious episodes died by more than 90% in a field experiment. Susceptible oysters were heavily colonized by OsHV-1 herpes virus as well as bacteria including vibrios potentially pathogenic for oysters, which proliferated in oyster flesh and body fluids during the mortality event. Nonetheless, susceptible oysters were found to sense microbes as indicated by an overexpression of immune receptors and immune signaling pathways. However, they did not express important immune effectors involved in antimicrobial immunity and apoptosis and showed repressed expression of genes involved in ROS and metal homeostasis. This contrasted with resistant oysters, which expressed those important effectors, controlled bacterial and viral colonization and showed 100% survival to the mortality event. Altogether, our results demonstrate that the immune response mounted by susceptible oysters lacks some important immune functions and fails in controlling microbial proliferation. This study opens the way to more holistic studies on the "mass mortality syndrome", which are now required to decipher the sequence of events leading to oyster mortalities and determine the relative weight of pathogens, oyster genetics and oyster-associated microbiota in the disease.


Asunto(s)
Crassostrea/inmunología , Inmunidad Innata , Animales , Crassostrea/microbiología , Crassostrea/virología , Francia , Herpesviridae/fisiología , Agua de Mar , Temperatura , Vibrio/fisiología
6.
BMC Genomics ; 15: 704, 2014 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-25149648

RESUMEN

BACKGROUND: Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. RESULTS: In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. CONCLUSION: We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Asunto(s)
Perfilación de la Expresión Génica/normas , Spodoptera/genética , Transcriptoma , Animales , Genes de Insecto , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Anotación de Secuencia Molecular , Estándares de Referencia , Olfato/genética , Spodoptera/metabolismo
7.
Chemosphere ; 346: 140565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303385

RESUMEN

The pollution of seawater by both biotic (bacteria, viruses) and abiotic contaminants (biocides, pharmaceutical residues) frequently leads to economic losses in aquaculture activities mostly mortality events caused by microbial infection. Advanced Oxidation Processes (AOPs) such as heterogeneous photocatalysis allow the removal of all organic contaminants present in water and therefore could reduce production losses in land-based farms. Oysters in land-based farms such as hatcheries and nurseries suffer from a large number of mortality events, resulting in significant losses. If photocatalysis has been widely studied for the decontamination, its application for disinfection is still overlooked, especially on seawater for viruses. We therefore studied seawater disinfection using the photocatalysis (UV365/TiO2) method in the context of Pacific oyster mortality syndrome (POMS). POMS has been defined as a polymicrobial disease involving an initial viral infection with Ostreid Herpes Virus 1, accompanied by multiple bacterial infections. We investigated the impact of treatment on Vibrio harveyi, a unique opportunistic pathogenic bacterium, and on a complex microbial community reflecting a natural POMS event. Viral inactivation was monitored using experimental infections to determine whether viral particles were still infectious after. Changes in the total bacterial community in seawater were studied by comparing UV365/TiO2 treatment with UV365-irradiated seawater and untreated seawater. In the case of OsHV-1, a 2-h photocatalytic treatment prevents POMS disease and oyster mortality. The same treatment also inactivates 80% of viable Vibrio harveyi culture (c.a. 1.5 log). Since OsHV-1 and Vibrio harveyi are effectively inactivated without long-term destabilization of the total bacterial microbiota in the seawater, photocatalysis appears to be a relevant alternative for disinfecting seawater in land-based oyster beds.


Asunto(s)
Crassostrea , Virus ADN , Microbiota , Vibrio , Animales , Agua de Mar
8.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497271

RESUMEN

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Sistema Inmunológico
9.
Anim Microbiome ; 5(1): 26, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138356

RESUMEN

BACKGROUND: The Pacific oyster Crassostrea gigas is one of the main cultivated invertebrate species worldwide. Since 2008, oyster juveniles have been confronted with a lethal syndrome known as the Pacific Oyster Mortality Syndrome (POMS). POMS is a polymicrobial disease initiated by a primary infection with the herpesvirus OsHV-1 µVar that creates an oyster immunocompromised state and evolves towards a secondary fatal bacteremia. RESULTS: In the present article, we describe the implementation of an unprecedented combination of metabarcoding and metatranscriptomic approaches to show that the sequence of events in POMS pathogenesis is conserved across infectious environments. We also identified a core bacterial consortium which, together with OsHV-1 µVar, forms the POMS pathobiota. This bacterial consortium is characterized by high transcriptional activities and complementary metabolic functions to exploit host's resources. A significant metabolic specificity was highlighted at the bacterial genus level, suggesting low competition for nutrients between members of the core bacteria. CONCLUSIONS: Lack of metabolic competition between the core bacteria might favor complementary colonization of host tissues and contribute to the conservation of the POMS pathobiota across distinct infectious environments.

10.
Sci Adv ; 9(36): eadh8990, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683000

RESUMEN

Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Ostreidae , Animales , Aclimatación , Epigénesis Genética , Síndrome , Variación Genética
11.
Microb Genom ; 8(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36355418

RESUMEN

Whole-genome sequencing is widely used to better understand the transmission dynamics, the evolution and the emergence of new variants of viral pathogens. This can bring crucial information to stakeholders for disease management. Unfortunately, aquatic virus genomes are usually difficult to characterize because most of these viruses cannot be easily propagated in vitro. Developing methodologies for routine genome sequencing of aquatic viruses is timely given the ongoing threat of disease emergence. This is particularly true for pathogenic viruses infecting species of commercial interest that are widely exchanged between production basins or countries. For example, the ostreid herpesvirus type 1 (OsHV-1) is a Herpesvirus widely associated with mass mortality events of juvenile Pacific oyster Crassostrea gigas. Genomes of Herpesviruses are large and complex with long direct and inverted terminal repeats. In addition, OsHV-1 is unculturable. It therefore accumulates several features that make its genome sequencing and assembly challenging. To overcome these difficulties, we developed a tangential flow filtration (TFF) method to enrich OsHV-1 infective particles from infected host tissues. This virus purification allowed us to extract high molecular weight and high-quality viral DNA that was subjected to Illumina short-read and Nanopore long-read sequencing. Dedicated bioinformatic pipelines were developed to assemble complete OsHV-1 genomes with reads from both sequencing technologies. Nanopore sequencing allowed characterization of new structural variations and major viral isomers while having 99,98 % of nucleotide identity with the Illumina assembled genome. Our study shows that TFF-based purification method, coupled with Nanopore sequencing, is a promising approach to enable in field sequencing of unculturable aquatic DNA virus.


Asunto(s)
Crassostrea , Virus ADN , Herpesviridae , Animales , Crassostrea/genética , Virus ADN/genética , ADN Viral/genética , Herpesviridae/genética
12.
Virus Evol ; 8(1): veac039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600094

RESUMEN

The genetic diversity of viral populations is a key driver of the spatial and temporal diffusion of viruses; yet, studying the diversity of whole genomes from natural populations still remains a challenge. Phylodynamic approaches are commonly used for RNA viruses harboring small genomes but have only rarely been applied to DNA viruses with larger genomes. Here, we used the Pacific oyster mortality syndrome (a disease that affects oyster farms around the world) as a model to study the genetic diversity of its causative agent, the Ostreid herpesvirus 1 (OsHV-1) in the three main French oyster-farming areas. Using ultra-deep sequencing on individual moribund oysters and an innovative combination of bioinformatics tools, we de novo assembled twenty-one OsHV-1 new genomes. Combining quantification of major and minor genetic variations, phylogenetic analysis, and ancestral state reconstruction of discrete traits approaches, we assessed the connectivity of OsHV-1 viral populations between the three oyster-farming areas. Our results suggest that the Marennes-Oléron Bay represents the main source of OsHV-1 diversity, from where the virus has dispersed to other farming areas, a scenario consistent with current practices of oyster transfers in France. We demonstrate that phylodynamic approaches can be applied to aquatic DNA viruses to determine how epidemiological, immunological, and evolutionary processes act and potentially interact to shape their diversity patterns.

13.
Microbiome ; 10(1): 85, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35659369

RESUMEN

BACKGROUND: The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS: Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS: We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.


Asunto(s)
Crassostrea , Microbiota , Animales , Acuicultura , Crassostrea/genética , Sistema Inmunológico , Transcriptoma
14.
Front Microbiol ; 12: 711377, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326830

RESUMEN

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 µVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.

15.
Front Microbiol ; 11: 311, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174904

RESUMEN

Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 µVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favor of POMS. After 5 days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that 5 days of transplantation were long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oysters families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.

16.
Front Microbiol ; 11: 1579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754139

RESUMEN

Juvenile Pacific oysters (Crassostrea gigas) are subjected to recurrent episodes of mass mortalities that constitute a threat for the oyster industry. This mortality syndrome named "Pacific Oyster Mortality Syndrome" (POMS) is a polymicrobial disease whose pathogenesis is initiated by a primary infection by a variant of an Ostreid herpes virus named OsHV-1 µVar. The characterization of the OsHV-1 genome during different disease outbreaks occurring in different geographic areas has revealed the existence of a genomic diversity for OsHV-1 µVar. However, the biological significance of this diversity is still poorly understood. To go further in understanding the consequences of OsHV-1 diversity on POMS, we challenged five biparental families of oysters to two different infectious environments on the French coasts (Atlantic and Mediterranean). We observed that the susceptibility to POMS can be different among families within the same environment but also for the same family between the two environments. Viral diversity analysis revealed that Atlantic and Mediterranean POMS are caused by two distinct viral populations. Moreover, we observed that different oyster families are infected by distinct viral populations within a same infectious environment. Altogether these results suggest that the co-evolutionary processes at play between OsHV-1 µVar and oyster populations have selected a viral diversity that could facilitate the infection process and the transmission in oyster populations. These new data must be taken into account in the development of novel selective breeding programs better adapted to the oyster culture environment.

17.
Dev Comp Immunol ; 32(5): 575-84, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17988734

RESUMEN

We report here the isolation in Spodoptera frugiperda (Lepidoptera) of an immune-related protein (hereafter named Spod-11-tox), characterized by imperfectly conserved tandem repeats of 11 cysteine-stabilized alpha beta motifs (CS-alphabeta), the structural scaffold characteristic of invertebrate defensins and scorpion toxins. Spod-11-tox orthologs were only found in Lepidopteran species, suggesting that this new protein family (named X-tox) is specific to this insect order. Moreover, phylogenetic analysis suggests that X-tox proteins represent a new class of proteins restricted to Lepidoptera and likely derived from Lepidopteran defensins. In S. frugiperda, analysis of gene expression revealed that spod-11-tox is rapidly induced by infection. However, and conversely to what is known for most insect antimicrobial peptides (AMP), spod-11-tox is mainly expressed in blood cells. Moreover, recombinant Spod-11-tox produced in the Sf9 cell line does not show any antimicrobial activity. Altogether, these results suggest that although X-tox proteins are derived from defensins, they may play a different and still unknown role in Lepidoptera immune response.


Asunto(s)
Defensinas/aislamiento & purificación , Proteínas de Insectos/aislamiento & purificación , Spodoptera/inmunología , Secuencia de Aminoácidos , Animales , Línea Celular , Defensinas/química , Defensinas/genética , Defensinas/farmacología , Datos de Secuencia Molecular , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Secuencias Repetidas en Tándem
18.
Front Microbiol ; 9: 2043, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233528

RESUMEN

Previous observations suggested that microbial communities contribute to coral health and the ecological resilience of coral reefs. However, most studies of coral microbiology focused on prokaryotes and the endosymbiotic algae Symbiodinium. In contrast, knowledge concerning diversity of other protists is still lacking, possibly due to methodological constraints. As most eukaryotic DNA in coral samples was derived from hosts, protist diversity was missed in metagenome analyses. To tackle this issue, we designed blocking primers for Scleractinia sequences amplified with two primer sets that targeted variable loops of the 18S rRNA gene (18SV1V2 and 18SV4). These blocking primers were used on environmental colonies of Pocillopora damicornis sensu lato from two regions with contrasting thermal regimes (Djibouti and New Caledonia). In addition to Symbiodinium clades A/C/D, Licnophora and unidentified coccidia genera were found in many samples. In particular, coccidian sequences formed a robust monophyletic clade with other protists identified in Agaricia, Favia, Montastraea, Mycetophyllia, Porites, and Siderastrea coral colonies. Moreover, Licnophora and coccidians had different distributions between the two geographic regions. A similar pattern was observed between Symbiodinium clades C and A/D. Although we were unable to identify factors responsible for this pattern, nor were we able to confirm that these taxa were closely associated with corals, we believe that these primer sets and the associated blocking primers offer new possibilities to describe the hidden diversity of protists within different coral species.

19.
Nat Commun ; 9(1): 4215, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30310074

RESUMEN

Infectious diseases are mostly explored using reductionist approaches despite repeated evidence showing them to be strongly influenced by numerous interacting host and environmental factors. Many diseases with a complex aetiology therefore remain misunderstood. By developing a holistic approach to tackle the complexity of interactions, we decipher the complex intra-host interactions underlying Pacific oyster mortality syndrome affecting juveniles of Crassostrea gigas, the main oyster species exploited worldwide. Using experimental infections reproducing the natural route of infection and combining thorough molecular analyses of oyster families with contrasted susceptibilities, we demonstrate that the disease is caused by multiple infection with an initial and necessary step of infection of oyster haemocytes by the Ostreid herpesvirus OsHV-1 µVar. Viral replication leads to the host entering an immune-compromised state, evolving towards subsequent bacteraemia by opportunistic bacteria. We propose the application of our integrative approach to decipher other multifactorial diseases that affect non-model species worldwide.


Asunto(s)
Bacteriemia/inmunología , Crassostrea/inmunología , Crassostrea/virología , Herpesviridae/fisiología , Terapia de Inmunosupresión , Virosis/inmunología , Virosis/virología , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Crassostrea/microbiología , Hemocitos/efectos de los fármacos , Hemocitos/patología , Hemocitos/virología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Fenotipo , Replicación Viral/efectos de los fármacos
20.
Mar Biotechnol (NY) ; 9(5): 577-91, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17668266

RESUMEN

The eastern oyster, Crassostrea virginica, and the Pacific oyster, C. gigas, are species of global economic significance as well as important components of estuarine ecosystems and models for genetic and environmental studies. To enhance the molecular tools available for oyster research, an international group of collaborators has constructed a 27,496-feature cDNA microarray containing 4460 sequences derived from C. virginica, 2320 from C. gigas, and 16 non-oyster DNAs serving as positive and negative controls. The performance of the array was assessed by gene expression profiling using gill and digestive gland RNA derived from both C. gigas and C. virginica, and digestive gland RNA from C. ariakensis. The utility of the microarray for detection of homologous genes by cross-hybridization between species was also assessed and the correlation between hybridization intensity and sequence homology for selected genes determined. The oyster cDNA microarray is publicly available to the research community on a cost-recovery basis.


Asunto(s)
Crassostrea/genética , Perfilación de la Expresión Génica/veterinaria , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Animales , Crassostrea/fisiología , Expresión Génica/fisiología , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Reproducibilidad de los Resultados , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA