Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34577052

RESUMEN

Multiple myeloma is an incurable plasma cell neoplastic disease representing about 10-15% of all haematological malignancies diagnosed in developed countries. Proteasome is a key player in multiple myeloma and proteasome inhibitors are the current first-line of treatment. However, these are associated with limited clinical efficacy due to acquired resistance. One of the solutions to overcome this problem is a polypharmacology approach, namely combination therapy and multitargeting drugs. Several polypharmacology avenues are currently being explored. The simultaneous inhibition of EZH2 and Proteasome 20S remains to be investigated, despite the encouraging evidence of therapeutic synergy between the two. Therefore, we sought to bridge this gap by proposing a holistic in silico strategy to find new dual-target inhibitors. First, we assessed the characteristics of both pockets and compared the chemical space of EZH2 and Proteasome 20S inhibitors, to establish the feasibility of dual targeting. This was followed by molecular docking calculations performed on EZH2 and Proteasome 20S inhibitors from ChEMBL 25, from which we derived a predictive model to propose new EZH2 inhibitors among Proteasome 20S compounds, and vice versa, which yielded two dual-inhibitor hits. Complementarily, we built a machine learning QSAR model for each target but realised their application to our data is very limited as each dataset occupies a different region of chemical space. We finally proceeded with molecular dynamics simulations of the two docking hits against the two targets. Overall, we concluded that one of the hit compounds is particularly promising as a dual-inhibitor candidate exhibiting extensive hydrogen bonding with both targets. Furthermore, this work serves as a framework for how to rationally approach a dual-targeting drug discovery project, from the selection of the targets to the prediction of new hit compounds.


Asunto(s)
Descubrimiento de Drogas , Mieloma Múltiple , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas , Inhibidores de Proteasoma/farmacología
2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38794129

RESUMEN

Tuberculosis (TB) continues to be a major global health challenge and a leading cause of death from infectious diseases. Inspired by the results from a previous work by our group on antimycobacterial N-alkylnitrobenzamides, which are structurally related to the nitrobenzamide family of decaprenylphosphoryl-ß-d-ribose oxidase (DprE1) inhibitors, the present study explored a broad array of substituted benzamides. We particularly focused on previously unexplored 3,5-dinitrobenzamide derivatives. Starting with 3,5-dinitrobenzoic acid, we synthesized a diverse library of amides, incorporating both linear and cyclic amine moieties and also assessed the impact of terminal aromatic groups connected through ether, ester, or amide bonds on the bioactivity of the compounds. The synthesis primarily utilized nucleophilic addition/elimination, SN2, and Mitsunobu reactions. The activity was impacted mainly by two structural features, the addition of an aromatic moiety as a terminal group and the type of linker. The most interesting compounds (c2, d1, and d2, MIC = 0.031 µg/mL) exhibited activities against Mycobacterium Tuberculosis (Mtb) H37Rv comparable to isoniazid. Complementary computational studies helped elucidate potential interactions with DprE1, enhancing our understanding of the molecular basis of their action. Our findings suggest that the most active compounds provide a promising foundation for the continued development of new antimycobacterial agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA