Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Stress Chaperones ; 22(5): 687-697, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28447215

RESUMEN

The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Línea Celular , Electroforesis en Gel de Poliacrilamida , Proteínas HSP70 de Choque Térmico/genética , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
J Alzheimers Dis ; 59(4): 1415-1426, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28759972

RESUMEN

Heat shock protein 70, encoded by the HSPA1A gene in humans, is a key component of the machinery that protects neuronal cells from various stress conditions and whose production significantly declines during the course of aging and as a result of several neurodegenerative diseases. Herein, we investigated whether sub-chronic intranasal administration of exogenous Hsp70 (eHsp70) exerts a neuroprotective effect on the temporal cortex and areas of the hippocampus in transgenic 5XFAD mice, a model of Alzheimer's disease. The quantitative analysis of neuronal pathologies in the compared groups, transgenic (Tg) versus non-transgenic (nTg), revealed high level of abnormalities in the brains of transgenic mice. Treatment with human recombinant Hsp70 had profound rejuvenation effect on both neuronal morphology and functional state in the temporal cortex and hippocampal regions in transgenic mice. Hsp70 administration had a smaller, but still significant, effect on the functional state of neurons in non-transgenic mice as well. Using deep sequencing, we identified multiple differentially expressed genes (DEGs) in the hippocampus of transgenic and non-transgenic mice. Furthermore, this analysis demonstrated that eHsp70 administration strongly modulates the spectrum of DEGs in transgenic animals, reverting to a pattern similar to that observed in non-transgenic age-matched mice, which included upregulation of genes responsible for amine transport, transmission of nerve impulses and other pathways that are impaired in 5XFAD mice. Overall, our data indicate that Hsp70 treatment may be an effective therapeutic against old age diseases of the Alzheimer's type.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/administración & dosificación , Neuroprostanos/administración & dosificación , Administración Intranasal/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Presenilina-1/genética
3.
Front Genet ; 8: 123, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979292

RESUMEN

Genomic disorders, the syndromes with multiple manifestations, may occur sporadically due to unequal recombination in chromosomal regions with specific architecture. Therefore, each patient may carry an individual structural variant of DNA sequence (SV) with small insertions and deletions (INDELs) sometimes less than 10 bp. The transposable elements of the Tc1/mariner superfamily are often associated with hotspots for homologous recombination involved in human genetic disorders, such as Williams Beuren Syndromes (WBS) with LIM-kinase 1-dependent cognitive defects. The Drosophila melanogaster mutant agnts3 has unusual architecture of the agnostic locus harboring LIMK1: it is a hotspot of chromosome breaks, ectopic contacts, underreplication, and recombination. Here, we present the analysis of LIMK1-containing locus sequencing data in agnts3 and three D. melanogaster wild-type strains-Canton-S, Berlin, and Oregon-R. We found multiple strain-specific SVs, namely, single base changes and small INDEls. The specific feature of agnts3 is 28 bp A/T-rich insertion in intron 1 of LIMK1 and the insertion of mobile S-element from Tc1/mariner superfamily residing ~460 bp downstream LIMK1 3'UTR. Neither of SVs leads to amino acid substitutions in agnts3 LIMK1. However, they apparently affect the nucleosome distribution, non-canonical DNA structure formation and transcriptional factors binding. Interestingly, the overall expression of miRNAs including the biomarkers for human neurological diseases, is drastically reduced in agnts3 relative to the wild-type strains. Thus, LIMK1 DNA structure per se, as well as the pronounced changes in total miRNAs profile, probably lead to LIMK1 dysregulation and complex behavioral dysfunctions observed in agnts3 making this mutant a simple plausible Drosophila model for WBS.

4.
J Alzheimers Dis ; 54(2): 763-76, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27567864

RESUMEN

Accumulation of amyloid-ß (Aß) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aß influences activity of proteasomes, the multisubunit protein complexes that hydrolyze the majority of intracellular proteins. However, the manner in which Aß affects the proteolytic activity of proteasomes has not been established. In this study the effect of Aß42 and Aß42 with isomerized Asp7 on activity of different forms of proteasomes has been analyzed. It has been shown that Aß peptides efficiently reduce activity of the 20S proteasomes, but increase activity of the 20S proteasomes capped with the 19S and/or 11S regulators. Modulation of proteasome activity is mainly determined by the C-terminal segment of Aß (amino acids 17-42). This study demonstrated an important role of proteasome regulators in the interplay between Aß and the proteasomes.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Complejo de la Endopetidasa Proteasomal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA