Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 30(3): 4434-4443, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209681

RESUMEN

A novel THz source, based on optical rectification in LiNbO3 using the tilted-pulse-front technique, is proposed and experimentally demonstrated. The pulse-front tilt is introduced by a volume phase holographic grating, efficiently used at perpendicular incidence in transmission, and the THz pulses are produced in a LiNbO3 plane-parallel nonlinear echelon slab, arranged parallel to the grating. As a unique feature, the entire setup has a plane-parallel, transmission-type configuration, which straightforwardly enables distortion-free scaling to large sizes, high pulse energies and high THz field strengths. The possibility of operating the setup at cryogenic temperature for increased THz generation efficiency is also investigated. Calculations predict efficiencies of 95% for diffraction and 2% for THz generation at room temperature with a refractive-index-matching liquid between the grating and the echelon slab.

2.
Opt Express ; 27(5): 7762-7775, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876334

RESUMEN

Recently a hybrid-type terahertz (THz) pulse source was proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a nonlinear crystal with a transmission stair-step echelon of period in the hundred-micrometer range etched into the front face. The tilt angle introduced by the conventional tilted-pulse-front setup (pre-tilt) was chosen to be equal to the tilt-angle needed inside the nonlinear crystal (62° for lithium niobate (LN)) in order to fulfill velocity-matching. In this case, plane-parallel nonlinear optical crystals can be used. The possibility of using a plane-parallel nonlinear optical crystal for producing good-quality, symmetric THz beams was considered the most important advantage of this setup. In the present paper, a thorough numerical investigation of a modified version of that setup is presented. In the new version, the tilted pulse-front is created by a transmission grating without any imaging optics, and a wedged nonlinear optical crystal with a small wedge angle is supposed. According to a 1D numerical code, significantly higher THz generation efficiency can be achieved with a transmission stair-step echelon-faced nonlinear crystal having a 5 - 15-degree wedge angle than with a plane-parallel one or with the conventional tilted-pulse-front setup. Because of the spatially-dependent group-delay dispersion introduced by the transmission grating, a small wedge in the nonlinear crystal improves the spatial homogeneity of the THz-generation process, resulting in higher efficiencies and better beam profiles. At 100 K temperature, and by using 800 nm pump pulses with 20 mJ pulse energy, 100 fs pulse length and 8 mm beam spot radius, approximately 4.5% conversion efficiency and close to 1 mJ terahertz pulse energy can be reached with the newly-proposed setup.

3.
Opt Express ; 27(21): 30681-30691, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684312

RESUMEN

A tilted-pulse-front pumped terahertz pulse source is proposed for the generation of extremely high field single-cycle terahertz pulses. The very simple and compact source consists of a single crystal slab having a blazed reflection grating grooved in its back surface. Its further important advantages are the energy scalability and the symmetric THz beam profile. Generation of ∼50 MV/cm focused field with 10.8 mJ terahertz pulse energy is predicted for a 7 cm diameter LiNbO 3 crystal, if the pump pulse is of 870 mJ energy, 1030 nm central wavelength and 1 ps pulse duration. Such sources can decisively promote the realization of THz driven electron and proton accelerators and open the way for a new generation concept of terahertz pulses having extreme high field.

4.
Opt Express ; 27(3): 2317-2326, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732270

RESUMEN

Taking advantage of the tunable conductivity of graphene under high terahertz (THz) electric field, a graphene-metal hybrid metamaterial consisting of an array of three adjoined orthogonally oriented split-ring resonators (SRRs) is proposed and experimentally demonstrated to show a maximum modulation depth of 23% in transmission when the THz peak field reaches 305 kV/cm. The transmission of the sample is dominated by the antisymmetric and symmetric resonant modes originating from the strong magneto-inductive and conductive coupling among the three SRRs, respectively. Numerical simulations and model calculations based on a coupled oscillator theory were performed to explain the modulation process. It is found that the graphene coating impairs the resonances by increasing the damping of the modes and decreasing the coupling between the SRRs whereas the strong THz field restores the resonances by decreasing the conductivity of graphene.

5.
Nat Commun ; 14(1): 6596, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852982

RESUMEN

The advent of intense terahertz (THz) sources opened a new era when the demonstration of the acceleration and manipulation of free electrons by THz pulses became within reach. THz-field-driven electron emission was predicted to be confined to a single burst due to the single-cycle waveform. Here we demonstrate the confinement of single-cycle THz-waveform-driven electron emission to one of the two half cycles from a solid surface emitter. Either the leading or the trailing half cycle was active, controlled by reversing the field polarity. THz-driven single-burst surface electron emission sources, which do not rely on field-enhancement structures, will impact the development of THz-powered electron acceleration and manipulation devices, all-THz compact electron sources, THz waveguides and telecommunication, THz-field-based measurement techniques and solid-state devices.

6.
Biomed Opt Express ; 12(4): 1947-1961, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33996209

RESUMEN

Terahertz (THz) irradiation of excised Eisenia andrei earthworms is shown to cause overriding of the genetically determined, endogenously mediated segment renewing capacity of the model animal. Single-cycle THz pulses of 5 µJ energy, 0.30 THz mean frequency, 293 kV/cm peak electric field, and 1 kHz repetition rate stimulated the cell proliferation (indicated by the high number of mitotic cells) and both histogenesis and organogenesis, producing a significantly higher number of regenerated segments. The most conspicuous alteration in THz-treated animals was the more intense development of the new central nervous system and blood vessels. These results clearly demonstrate that THz pulses are capable to efficiently trigger biological processes and suggest potential applications in medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA