Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 588(Pt 8): 1281-92, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20194128

RESUMEN

Synaptic activity in the medial prefrontal cortex (mPFC) is fundamental for higher cognitive functions such as working memory. The present study shows that small conductance (SK) calcium-activated potassium channels attenuate excitatory synaptic transmission at layer 2/3 and layer 5 inputs to layer 5 pyramidal neurons in the mPFC. SK channels are located postsynaptically at synapses where they are activated during synaptic transmission by calcium influx through NMDA receptors, L-type calcium channels, R-type calcium channels and by calcium release from IP(3)-sensitive stores. Removal of the SK channel-mediated shunt of synaptic transmission reveals significant NMDA receptor-mediated activation during basal synaptic transmission, which is greater at layer 5 inputs (approximately 30%) than at layer 2/3 inputs (approximately 20%). These findings show that interactions between NMDA receptors, SK channels and voltage-gated calcium channels play a critical role in regulating excitatory synaptic transmission in layer 5 pyramidal neurons in the mPFC.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/fisiología , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/fisiología , Canales de Calcio Tipo R/fisiología , Comunicación Celular , Femenino , Masculino , Modelos Animales , Células Piramidales/citología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología
2.
Neuroscience ; 137(3): 781-94, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16289832

RESUMEN

Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group I metabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Sinapsis/efectos de los fármacos , Canales Catiónicos TRPC/fisiología , Animales , Western Blotting , Canales de Calcio/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Estimulación Eléctrica , Electrofisiología , Femenino , Inmunoprecipitación , Técnicas In Vitro , Masculino , Neuronas Aferentes/efectos de los fármacos , Técnicas de Placa-Clamp , ARN/biosíntesis , ARN/aislamiento & purificación , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/efectos de los fármacos
3.
Physiol Rev ; 83(3): 803-34, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12843409

RESUMEN

A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/citología , Animales , Condicionamiento Psicológico , Miedo/fisiología , Humanos , Vías Nerviosas , Plasticidad Neuronal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA