Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 127(30): 6309-6319, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37490391

RESUMEN

Ultrasound degrades "legacy" per- and polyfluoroalkyl substances (PFAS) via thermolysis at the interface of cavitation bubbles. However, compared to "legacy" PFAS, polyfluoroalkyl substances have a lesser affinity to the interface and may react with •OH. To understand the effect of size on degradation kinetics and mechanism of polyfluoroalkyl substances, this work compared ultrasonic treatment (f = 354 kHz) of n:2 fluorotelomer sulfonates (FTSAs) of varying chain lengths (n = 4, 6, 8). Of the congeners tested, 4:2 fluorotelomer sulfonate (FtS) degraded the fastest in individual solutions and in mixtures. Sonolytic rate constants correlated to diffusion coefficients of FTSAs, indicating that diffuse short-chain FTSAs outcompete long-chain FTSAs to adsorb and react at the bubble interface. Interestingly, 4:2 and 8:2 FtS had different evolutions of fluoride-to-sulfate ratios, [F-]/[SO42-], over time. Initially, [F-]/[SO42-]4:2 FtS and [F-]/[SO42-]8:2 FtS were respectively higher and lower than theoretical ratios. This difference was attributed to the lower maximum surface excess of 8:2 FtS, hindering its ability to pack and, consequently, defluorinate at the interface. In the presence of an •OH scavenger, FTSAs had similar %F- release compared to no scavenger, whereas %SO42- release was drastically diminished. Therefore, thermolysis is the primary degradation pathway of FTSAs; •OH supplements SO42- formation. These results indicate that ultrasound directly cleaves C-F bonds within the fluoroalkyl chain. This work shows that ultrasound efficiently degrades FTSAs of various sizes and may potentially treat other classes of polyfluoroalkyl substances.

2.
Environ Sci Technol ; 56(6): 3729-3738, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226467

RESUMEN

Ultrasound coupled with activated persulfate can synergistically degrade aqueous organic contaminants. Here, in situ electron paramagnetic resonance spin trapping was used to compare radicals produced by ultrasonically activated persulfate (US-PS) and its individual technologies, ultrasound alone (US) and heat-activated persulfate (PS), with respect to temperature. Radicals were trapped using 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, to form detectable nitroxide adducts. Using initial rates of radical adduct formation, and compared to US and PS, US-PS at 40 and 50 °C resulted in the largest synergistic production of radicals. Radicals generated from US were reasonably consistent from 40 to 70 °C, indicating that temperature had little effect on cavitational bubble collapse over this range. However, synergy indexes calculated from initial rates showed that ultrasonic activation of persulfate at the bubble interface changes with temperature. From these results, we speculate that higher temperatures enhance persulfate uptake into cavitation bubbles via nanodroplet injection. DMPO-OH was the predominant adduct detected for all conditions. However, competition modeling and spin trapping in the presence of nitrobenzene and atrazine probes showed that SO4•- predominated. Therefore, the DMPO-OH signal is derived from SO4•- trapping with subsequent DMPO-SO4- hydrolysis to DMPO-OH. Spin trapping is effective in quantifying total radical adduct formation but limited in measuring primary radical speciation in this case.


Asunto(s)
Óxidos N-Cíclicos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Radicales Libres , Cinética , Marcadores de Spin , Detección de Spin/métodos , Temperatura
3.
Ultrason Sonochem ; 67: 105172, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32454446

RESUMEN

Coupling ultrasound with other remediation technologies has potential to result in synergistic degradation of contaminants. In this work, we evaluated synergisms from adding high-power ultrasound (20 kHz; 250 W) to activated persulfate over a range of bulk temperatures (20-60 °C). We studied the aqueous degradation kinetics of three polycyclic aromatic hydrocarbons (PAHs: naphthalene, phenanthrene, and fluoranthene) treated by ultrasound-alone, heat-activated persulfate, and combined ultrasonically-activated persulfate (US-PS). At 20 °C, observed US-PS rate constants strongly correlated with Wilke-Chang diffusion coefficients. This correlation indicates PAH molecules diffuse to the bubble-water interface prior to reaction with sulfate radicals (SO4-) generated at the interface. At higher temperatures, observed US-PS rate constants appear to be a more complicated function of temperature and diffusion coefficients. Synergy indexes for PAHs with fast diffusion coefficients were greatest at 20 °C. Fluoranthene, the largest and most hydrophobic PAH, had a maximum synergy index at 30 °C; it benefited from additional thermal persulfate activation in bulk solution. Fluoranthene synergy indexes, however, decreased above 30 °C and became antagonistic at 60 °C. Electron paramagnetic resonance (EPR) spin trapping was used to quantify hydroxyl radical (OH) produced from acoustic cavitation in the absence of persulfate. These data showed consistent OH production from 20 to 60 °C, indicating PAH antagonisms at 60 °C were not due to lower bubble collapse temperatures. Instead, the results suggest that PAH antagonisms are caused by increased radical-radical recombination as bulk temperature increases. In effort to develop an efficient, combined remediation technology, this work suggests bulk temperatures between 20 and 40 °C maximize US-PS synergisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA