Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220461

RESUMEN

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Asunto(s)
HDL-Colesterol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de la Membrana/ultraestructura , Células 3T3 , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Alineación de Secuencia , Esteroles/metabolismo
2.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37099381

RESUMEN

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Asunto(s)
Histona Desacetilasas , Nucleosomas , Cromatina/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Nucleosomas/genética , Factores de Transcripción/metabolismo , Humanos
3.
Mol Cell ; 61(6): 834-49, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990987

RESUMEN

The death-inducing signaling complex (DISC) initiates death receptor-induced apoptosis. DISC assembly and activation are controlled by c-FLIP isoforms, which function as pro-apoptotic (c-FLIPL only) or anti-apoptotic (c-FLIPL/c-FLIPS) regulators of procaspase-8 activation. Current models assume that c-FLIP directly competes with procaspase-8 for recruitment to FADD. Using a functional reconstituted DISC, structure-guided mutagenesis, and quantitative LC-MS/MS, we show that c-FLIPL/S binding to the DISC is instead a co-operative procaspase-8-dependent process. FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with c-FLIPL/S via a hierarchical binding mechanism. Procaspase-8 activation is regulated by the ratio of unbound c-FLIPL/S to procaspase-8, which determines composition of the procaspase-8:c-FLIPL/S heterodimer. Thus, procaspase-8:c-FLIPL exhibits localized enzymatic activity and is preferentially an activator, promoting DED-mediated procaspase-8 oligomer assembly, whereas procaspase-8:c-FLIPS lacks activity and potently blocks procaspase-8 activation. This co-operative hierarchical binding model explains the dual role of c-FLIPL and crucially defines how c-FLIP isoforms differentially control cell fate.


Asunto(s)
Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Caspasa 8/genética , Linaje de la Célula/genética , Isoformas de Proteínas/genética , Apoptosis/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasa 8/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Mutagénesis , Unión Proteica , Isoformas de Proteínas/metabolismo , Espectrometría de Masas en Tándem
4.
J Am Chem Soc ; 144(8): 3360-3364, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175758

RESUMEN

We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and ß-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.


Asunto(s)
Histonas , Sirtuinas , Cromatina , Histona Desacetilasas/genética , Histonas/química , Nucleosomas
5.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264408

RESUMEN

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas Represoras/genética , Proteína 4 de Unión a Retinoblastoma/genética , Transactivadores/genética , Secuencia de Aminoácidos/genética , Microscopía por Crioelectrón , Proteínas de Unión al ADN/ultraestructura , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/ultraestructura , Histona Desacetilasas/genética , Histona Desacetilasas/ultraestructura , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/ultraestructura , Nucleosomas/genética , Nucleosomas/ultraestructura , Unión Proteica/genética , Dominios Proteicos/genética , Proteínas Represoras/ultraestructura , Proteína 4 de Unión a Retinoblastoma/ultraestructura , Transactivadores/ultraestructura
6.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
7.
Mol Cell ; 51(1): 57-67, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23791785

RESUMEN

Class I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.


Asunto(s)
Histona Desacetilasa 1/química , Histona Desacetilasas/química , Fosfatos de Inositol/fisiología , Proteínas Represoras/química , Secuencia de Aminoácidos , Dimerización , Células HEK293 , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Humanos , Fosfatos de Inositol/química , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Especificidad por Sustrato , Transactivadores
8.
Mol Cell ; 47(2): 291-305, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22683266

RESUMEN

Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Línea Celular Tumoral , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Células Jurkat , Espectrometría de Masas/métodos , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/química , Receptor fas/química
9.
Genes Dev ; 25(12): 1262-74, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21685362

RESUMEN

We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2-E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1-4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain-UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL-UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL-UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL-UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake.


Asunto(s)
Receptores de LDL/metabolismo , Esteroles/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Células HEK293 , Humanos , Hierro/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Estereoisomerismo , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/química
10.
Nature ; 481(7381): 335-40, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22230954

RESUMEN

Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.


Asunto(s)
Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Co-Represor 2 de Receptor Nuclear/química , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Humanos , Fosfatos de Inositol/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Relación Estructura-Actividad
11.
Nucleic Acids Res ; 43(4): 2033-44, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25653165

RESUMEN

Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Histona Desacetilasa 1/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Ciclo Celular , Proteínas Co-Represoras/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Histona Desacetilasa 2/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción
12.
J Biol Chem ; 290(29): 18237-18244, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26055705

RESUMEN

Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the "closed" conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes.


Asunto(s)
Histona Desacetilasas/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Histona Desacetilasas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Co-Represor 2 de Receptor Nuclear/química , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/metabolismo
13.
Cancer Metastasis Rev ; 33(4): 857-67, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25352341

RESUMEN

Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.


Asunto(s)
Epigénesis Genética , Histona Desacetilasas/genética , Neoplasias/genética , Proteínas Represoras/genética , Activación Transcripcional/genética , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/genética , Histona Desacetilasas/química , Histonas/genética , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/terapia , Proteínas Represoras/química , Relación Estructura-Actividad , Transactivadores
14.
Proc Natl Acad Sci U S A ; 108(50): 20107-12, 2011 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-22109552

RESUMEN

The E3 ubiquitin ligase IDOL (inducible degrader of the LDL receptor) regulates LDL receptor (LDLR)-dependent cholesterol uptake, but its mechanism of action, including the molecular basis for its stringent specificity, is poorly understood. Here we show that IDOL uses a singular strategy among E3 ligases for target recognition. The IDOL FERM domain binds directly to a recognition sequence in the cytoplasmic tails of lipoprotein receptors. This physical interaction is independent of IDOL's really interesting new gene (RING) domain E3 ligase activity and its capacity for autoubiquitination. Furthermore, IDOL controls its own stability through autoubiquitination of a unique FERM subdomain fold not present in other FERM proteins. Key residues defining the IDOL-LDLR interaction and IDOL autoubiquitination are functionally conserved in their insect homologs. Finally, we demonstrate that target recognition by IDOL involves a tripartite interaction between the FERM domain, membrane phospholipids, and the lipoprotein receptor tail. Our data identify the IDOL-LDLR interaction as an evolutionarily conserved mechanism for the regulation of lipid uptake and suggest that this interaction could potentially be exploited for the pharmacologic modulation of lipid metabolism.


Asunto(s)
Proteolisis , Receptores de Lipoproteína/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos , Animales , Membrana Celular/metabolismo , Secuencia Conservada , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Receptores de Lipoproteína/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
15.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37833074

RESUMEN

About a quarter of total human cancers carry mutations in Ras isoforms. Accumulating evidence suggests that small GTPases, RalA, and RalB, and their activators, Ral guanine nucleotide exchange factors (RalGEFs), play an essential role in oncogenic Ras-induced signalling. We studied the interaction between human KRas4B and the Ras association (RA) domain of Rgl2 (Rgl2RA), one of the RA-containing RalGEFs. We show that the G12V oncogenic KRas4B mutation changes the interaction kinetics with Rgl2RA The crystal structure of the KRas4BG12V: Rgl2RA complex shows a 2:2 heterotetramer where the switch I and switch II regions of each KRasG12V interact with both Rgl2RA molecules. This structural arrangement is highly similar to the HRasE31K:RALGDSRA crystal structure and is distinct from the well-characterised Ras:Raf complex. Interestingly, the G12V mutation was found at the dimer interface of KRas4BG12V with its partner. Our study reveals a potentially distinct mode of Ras:effector complex formation by RalGEFs and offers a possible mechanistic explanation for how the oncogenic KRas4BG12V hyperactivates the RalA/B pathway.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal/genética , Isoformas de Proteínas/metabolismo , Genes ras
16.
bioRxiv ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39372790

RESUMEN

Reversible modification of the histone H3 N-terminal tail is critical in regulating chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle down proteomics with tandem mass tags. This cut-and-paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetics discovery and therapeutic development.

17.
Nat Struct Mol Biol ; 15(9): 924-31, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19172745

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) has important roles in adipogenesis and immune response as well as roles in both lipid and carbohydrate metabolism. Although synthetic agonists for PPARgamma are widely used as insulin sensitizers, the identity of the natural ligand(s) for PPARgamma is still not clear. Suggested natural ligands include 15-deoxy-delta12,14-prostaglandin J2 and oxidized fatty acids such as 9-HODE and 13-HODE. Crystal structures of PPARgamma have revealed the mode of recognition for synthetic compounds. Here we report structures of PPARgamma bound to oxidized fatty acids that are likely to be natural ligands for this receptor. These structures reveal that the receptor can (i) simultaneously bind two fatty acids and (ii) couple covalently with conjugated oxo fatty acids. Thermal stability and gene expression analyses suggest that such covalent ligands are particularly effective activators of PPARgamma and thus may serve as potent and biologically relevant ligands.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , PPAR gamma/química , PPAR gamma/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Chlorocebus aethiops , Cisteína/química , Humanos , Ligandos , Sustancias Macromoleculares/química , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , PPAR gamma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática
18.
Science ; 382(6671): eadf0966, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943936

RESUMEN

Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.


Asunto(s)
Colesterol en la Dieta , Enterocitos , Absorción Intestinal , Proteínas de Transporte de Membrana , Animales , Ratones , Transporte Biológico , Colesterol en la Dieta/metabolismo , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Enterocitos/metabolismo , Receptores X del Hígado/metabolismo , Humanos , Yeyuno/metabolismo , Ratones Noqueados
19.
bioRxiv ; 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503112

RESUMEN

Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption. One-Sentence Summary: Identification of a targetable pathway for regulation of dietary cholesterol absorption.

20.
Mol Cell Biol ; 42(2): e0036321, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871063

RESUMEN

Mutations in thyroid hormone receptor α (TRα), a ligand-inducible transcription factor, cause resistance to thyroid hormone α (RTHα). This disorder is characterized by tissue-specific hormone refractoriness and hypothyroidism due to the inhibition of target gene expression by mutant TRα-corepressor complexes. Using biophysical approaches, we show that RTHα-associated TRα mutants devoid of ligand-dependent transcription activation function unexpectedly retain the ability to bind thyroid hormone. Visualization of the ligand T3 within the crystal structure of a prototypic TRα mutant validates this notion. This finding prompted the synthesis of different thyroid hormone analogues, identifying a lead compound, ES08, which dissociates corepressor from mutant human TRα more efficaciously than T3. ES08 rescues developmental anomalies in a zebrafish model of RTHα and induces target gene expression in TRα mutation-containing cells from an RTHα patient more effectively than T3. Our observations provide proof of principle for developing synthetic ligands that can relieve transcriptional repression by the mutant TRα-corepressor complex for treatment of RTHα.


Asunto(s)
Proteínas Co-Represoras/genética , Expresión Génica/fisiología , Predisposición Genética a la Enfermedad/genética , Hormonas Tiroideas/metabolismo , Animales , Humanos , Mutación/genética , Fenotipo , Receptores de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Triyodotironina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA