Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 22(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36146220

RESUMEN

This paper investigates the problem of source localization using signal time-of-arrival (TOA) measurements in the presence of unknown start transmission time. Most state-of-art methods are based on convex relaxation technologies, which possess global solution for the relaxed optimization problem. However, computational complexity of the convex optimization-based algorithm is usually large, and need CVX toolbox to solve it. Although the two stage weighted least squares (2SWLS) algorithm has very low computational complexity, its estimate performance is susceptible to sensor geometry and threshold phenomenon. A new algorithm that is directly derived from maximum likelihood estimator (MLE) is developed. The newly proposed algorithm is named as fixed point iteration (FPI); it only involves simple calculations, such as addition, multiplication, division, and square-root. Unlike state-of-the-art methods, there is no matrix inversion operation and can avoid the unstable performance incurred by singular matrix. The FPI algorithm can be easily extended to the scenario with sensor position errors. Finally, simulation results demonstrate that the proposed algorithm reaches a good balance between computational complexity and localization accuracy.

2.
Biochem Biophys Res Commun ; 534: 659-665, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239168

RESUMEN

Apolipoprotein A4 (ApoA4) regulates lipid and glucose metabolism and exerts anti-inflammatory effects in atherogenesis and colitis. The present study explored the presumed protective role of ApoA4 in carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. The ALI model in wild type (WT), ApoA4 knock-out (ApoA4-KO) and ApoA4 transgenic (ApoA4-TG) mice was induced by a single intraperitoneal administration of CCl4. Liver and blood were harvested from mice to assess liver functions, immunohistological changes, immune cell populations and cytokine profiles. ApoA4 deficiency aggravated, and ApoA4 overexpression alleviated CCl4-inflicted liver damage by controlling levels of anti-oxidant enzymes. ApoA4 deletion increased the recruitment of monocytes/macrophages into the injured liver and upregulated the plasma levels of IL-6, TNF-α and MCP-1, but lower IL-10 and IFN-γ. ApoA4 over-expression rescued this effect and resulted in lower percentages of monocytes/macrophages and dendritic cells, the ratio of blood pro-inflammatory to anti-inflammatory monocytes and reduced plasma concentrations of IL-6, but enhanced IL-10 and IFN-γ. We propose ApoA4 as a potential new therapeutic target for the management of liver damage.


Asunto(s)
Apolipoproteínas A/metabolismo , Tetracloruro de Carbono/antagonistas & inhibidores , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Animales , Antioxidantes/metabolismo , Apolipoproteínas A/deficiencia , Apolipoproteínas A/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/sangre , Citocinas/genética , Mediadores de Inflamación/sangre , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Ratones Transgénicos , Monocitos/inmunología , Regulación hacia Arriba
3.
J Neurosci Res ; 99(11): 2860-2873, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510511

RESUMEN

The gut-brain axis provides a pathway for the interaction between gut microbiota and methamphetamine (METH) addiction. However, the gut microbial signatures during different phases of METH use remain unclear. In the present study, we established models of acquisition, extinction, and reinstatement of METH-induced conditioned place preference (CPP) in male mice and detected the gut microbiome profiles of the fecal samples at the three phases by 16S rRNA gene sequencing. Our results revealed that the richness of the gut microbiome increased following repeated METH administration, and it decreased after 4 weeks of abstinence. The microbial richness remained at a low level after one METH challenge at the reinstatement phase. The abundance of several genera including Prevotella, Bacteroides, and Lactobacillus differentially altered among phases of METH-induced CPP. The co-occurrence networks of the gut microbiome became weaker and more unstable during the development of METH-induced CPP at the extinction and reinstatement phases. Notably, the predicted gene functions of short-chain fatty acid metabolism, which were correlated with the abundance of Prevotella, Bacteroides, and Lactobacillus, were found differentially enriched among phases of METH-induced CPP. Our findings highlight a potential association between perturbations of the gut microbiome and different phases of METH use.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Microbioma Gastrointestinal , Metanfetamina , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Operante , Extinción Psicológica , Masculino , Metanfetamina/farmacología , Ratones , ARN Ribosómico 16S/genética
4.
Int J Legal Med ; 135(3): 709-718, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32851473

RESUMEN

The MiSeq® FGX Forensic system and the HID-Ion AmpliSeq Panel were previously developed for massively parallel sequencing (MPS) for forensic casework. Among the three major sequencing platforms, BGISEQ-500TM, which is based on multiple PCRs, is still lacking in forensics. Here, a novel forensic panel was constructed to detect 186 single-nucleotide polymorphisms (SNPs) and 123 short tandem repeats (STRs) with MPS technology on the BGISEQ-500™ platform. First, the library preparation, sequencing process, and data analysis were performed, focusing on the average depth of coverage and heterozygote balance. We calculated the allelic frequencies and forensic parameters of STR and SNP loci in 73 unrelated Chinese Han individuals. In addition, performance was evaluated with accuracy, uniformity, sensitivity, PCR inhibitor, repeatability and reproducibility, mixtures, degraded samples, case-type samples, and pedigree analyses. The results showed that 100% accurate and concordant genotypes can be obtained, and the loci with an abundance in the interquartile range accounted for 92.90% of the total, suggesting reliable uniformity in this panel. We obtained a locus detection rate that was higher than 98.78% from 78 pg of input DNA, and the optimal amount was 1.25-10 ng. The maximum concentrations of hematin and humic acid were 200 and 100 µM, respectively (the ratios of detected loci were 96.52% and 92.41%), in this panel. As a mixture, compared with those of SNPs, minor-contributor alleles of STRs could be detected at higher levels. For the degraded sample, the ratio of detected loci was 98.41%, and most profiles from case-type samples were not significantly different in abundance in our studies. As a whole, this panel showed high-performance, reliable, robust, repeatable, and reproducible results, which are sufficient for paternity testing, individual identification, and use for potentially degraded samples in forensic science.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Adulto , Pueblo Asiatico/etnología , Niño , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Humanos , Masculino , Reacción en Cadena de la Polimerasa Multiplex , Embarazo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/instrumentación
5.
Mol Nutr Food Res ; 66(18): e2101034, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35909347

RESUMEN

SCOPE: Hepatic steatosis and insulin resistance (IR) are risk factors for many metabolic syndromes such as NAFLD and T2DM. ApoA4 improves glucose hemostasis by increasing glucose-stimulated insulin secretion and glucose uptake via PI3K-Akt activation in adipocytes. However, whether ApoA4 has an effect on hepatic steatosis or IR remains unclear. METHODS AND RESULTS: ApoA4-knockout (KO) aggravates diet-induced obesity, hepatic steatosis, and IR in mice promoted by increased hepatic lipogenesis gene expression based on RNA-seq data. Conversely, liver-specific overexpression of ApoA4 via AAV-ApoA4 transduction reverses the effect in ApoA4-KO mice, accompanied by suppressed hepatic lipogenesis, increased lipolysis, and fatty acid oxidation. Short-term treatment with recombinant ApoA4 protein improves glucose clearance and liver insulin sensitivity, and reduces hepatic lipogenesis gene expression in the absence of insulin. Moreover, in primary hepatocytes and a hepatic cell line, ApoA4 improves hepatic glucose uptake via IRS-PI3K-Akt signaling and decreases fat deposition and hepatic lipogenesis gene expression by inhibiting SREBF1 activity. CONCLUSION: ApoA4 restricts hepatic steatosis by inhibiting SREBF1-mediated lipogenesis and improves insulin sensitivity and glucose uptake via IRS-PI3K-Akt signaling in the liver. These findings indicate that ApoA4 may serve as a therapeutic target for obesity-associated NAFLD.


Asunto(s)
Resistencia a la Insulina , Insulinas , Enfermedad del Hígado Graso no Alcohólico , Animales , Apolipoproteínas A , Dieta , Ácidos Grasos , Glucosa/metabolismo , Insulinas/metabolismo , Lipogénesis , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Obesidad/complicaciones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
6.
Front Immunol ; 13: 1038401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426356

RESUMEN

The liver immune microenvironment is a key element in the development of hepatic inflammation in NAFLD. ApoA4 deficiency increases the hepatic lipid burden, insulin resistance, and metabolic inflammation. However, the effect of ApoA4 on liver immune cells and the precise immune cell subsets that exacerbate fatty liver remain elusive. The aim of this study was to profile the hepatic immune cells affected by ApoA4 in NAFL. We performed scRNA-seq on liver immune cells from WT and ApoA4-deficient mice administered a high-fat diet. Immunostaining and qRT-PCR analysis were used to validate the results of scRNA-seq. We identified 10 discrete immune cell populations comprising macrophages, DCs, granulocytes, B, T and NK&NKT cells and characterized their subsets, gene expression profiles, and functional modules. ApoA4 deficiency led to significant increases in the abundance of specific subsets, including inflammatory macrophages (2-Mφ-Cxcl9 and 4-Mφ-Cxcl2) and activated granulocytes (0-Gran-Wfdc17). Moreover, ApoA4 deficiency resulted in higher Lgals3, Ctss, Fcgr2b, Spp1, Cxcl2, and Elane levels and lower Nr4a1 levels in hepatic immune cells. These genes were consistent with human NAFLD-associated marker genes linked to disease severity. The expression of NE and IL-1ß in granulocytes and macrophages as key ApoA4 targets were validate in the presence or absence of ApoA4 by immunostaining. The scRNA-seq data analyses revealed reprogramming of liver immune cells resulted from ApoA4 deficiency. We uncovered that the emergence of ApoA4-associated immune subsets (namely Cxcl9+ macrophage, Cxcl2+ macrophage and Wfdc17+ granulocyte), pathways, and NAFLD-related marker genes may promote the development of NAFL. These findings may provide novel therapeutic targets for NAFL and the foundations for further studying the effects of ApoA4 on immune cells in various diseases.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Análisis de Secuencia de ARN
7.
Artículo en Inglés | MEDLINE | ID: mdl-32791167

RESUMEN

Substance addiction is a chronic and complicated disease involving genetic and environmental factors. Coregulated by the above factors, perturbations of the gut microbiome have been shown to have an essential role in the development of many neuropsychiatric disorders, including addiction. However, shifts in the gut microbiome during different stages of morphine addiction remain uncharacterized. In the present study, we harvested fecal samples from mice at the acquisition (both the control and morphine groups), extinction and reinstatement stages of morphine-induced conditioned place preference (CPP). Gut microbiome profiles were detected with 16S ribosomal RNA gene sequencing. We observed an increase in community richness following morphine conditioning, and it decreased after 4 weeks of abstinence. The abundance of Verrucomicrobia increased and Bacteroides decreased at the acquisition of morphine-induced CPP, while a recovery trend was found at the extinction stage. Several discriminative genera were identified for the characterization of different stages of morphine CPP. Functional analysis of taxa with differential abundance between CPP stages was mainly enriched in the pathways of amino acid metabolism. Taken together, our findings will extend the association between dysbiosis of the gut microbiome and the opioid-induced rewarding or reinforcing behaviors.


Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Morfina/farmacología , Narcóticos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratones , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA