Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Phytopathology ; 114(2): 359-367, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37665395

RESUMEN

Cucumber leaf spot (CLS), caused by Corynespora cassiicola, is a serious disease of greenhouse cucumbers. With frequent use of existing fungicides, C. cassiicola has developed resistance to some of them, with serious implications for the control of CLS in the field. With a lack of new fungicides, it is necessary to use existing fungicides for effective control. Therefore, this study monitored the resistance of C. cassiicola to three commonly used and effective fungicides, boscalid, trifloxystrobin, and carbendazim, from 2017 to 2021. The frequency of resistance to boscalid showed an increasing trend, and the highest frequency was 85.85% in 2020. The frequency of resistance to trifloxystrobin was greater than 85%, and resistance to carbendazim was maintained at 100%. Among these fungicides, strains with multiple resistance to boscalid, trifloxystrobin, and carbendazim were found, accounting for 32.00, 25.25, 33.33, 43.06, and 37.24%, respectively. Of the strains that were resistant to boscalid, 87% had CcSdh mutations, including seven genotypes: B-H278L/Y, B-I280V, C-N75S, C-S73P, D-D95E, and D-G109V. Also, six mutation patterns of the Ccß-tubulin gene were detected: E198A, F167Y, E198A&M163I, E198A&F167Y, M163I&F167Y, and E198A&F200C. Detection of mutations of the CcCytb gene in resistant strains showed that 98.8% were found to have only the G143A mutation. A total of 27 mutation combinations were found and divided into 14 groups for analysis. The resistance levels differed according to genotype. The development of genotypes showed a complex trend, increasing from 4 in 2017 to 13 in 2021 and varying by region. Multiple fungicide resistance is gradually increasing. Therefore, it is necessary to understand the types of mutations and the trend of resistance to guide the use of fungicides to achieve disease control.


Asunto(s)
Acetatos , Ascomicetos , Bencimidazoles , Compuestos de Bifenilo , Carbamatos , Cucumis sativus , Fungicidas Industriales , Iminas , Niacinamida/análogos & derivados , Estrobilurinas , Fungicidas Industriales/farmacología , Enfermedades de las Plantas , China
2.
Pestic Biochem Physiol ; 198: 105760, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225067

RESUMEN

Corynespora leaf spot, caused by Corynespora cassiicola, is a foliar disease in cucumber. While the application of quinone outside inhibitors (QoIs) is an effective measure for disease control, it carries the risk of resistance development. In our monitoring of trifloxystrobin resistance from 2008 to 2020, C. cassiicola isolates were categorized into three populations: sensitive isolates (S, 0.01 < EC50 < 0.83 µg/mL), moderately resistant isolates (MR, 1.18 < EC50 < 55.67 µg/mL), and highly resistant isolates (HR, EC50 > 56.98 µg/mL). The resistance frequency reached up to 90% during this period, with an increasing trend observed in the annual average EC50 values of all the isolates. Analysis of the CcCytb gene revealed that both MR and HR populations carried the G143A mutation. Additionally, we identified mitochondrial heterogeneity, with three isolates carrying both G143 and A143 in MR and HR populations. Interestingly, isolates with the G143A mutation (G143A-MR and G143A-HR) displayed differential sensitivity to QoIs. Further experiments involving gene knockout and complementation demonstrated that the major facilitator superfamily (MFS) transporter (CcMfs1) may contribute to the disparity in sensitivity to QoIs between the G143A-MR and G143A-HR populations. However, the difference in sensitivity caused by the CcMfs1 transporter is significantly lower than the differences observed between the two populations. This suggests additional mechanisms contributing to the variation in resistance levels among C. cassiicola isolates. Our study highlights the alarming level of trifloxystrobin resistance in C. cassiicola in China, emphasizing the need for strict prohibition of QoIs use. Furthermore, our findings shed light on the occurrence of both target and non-target resistance mechanisms associated with QoIs in C. cassiicola.


Asunto(s)
Acetatos , Ascomicetos , Fungicidas Industriales , Iminas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas
3.
Plant Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812369

RESUMEN

Leaf mustard (Brassica juncea [L.] Czern. et Coss.) belongs to Brassicaceae and is an important leaf vegetable widely cultivated in the Yangtze River basin and various southern provinces in China. In August 2023, the rhizome decay symptoms were observed at the stem base of leaf mustard plants (cv. Huarong) in the field of Changde City (29.05 °N; 111.59 °E), Hunan Province, China. The incidence of symptomatic leaf mustard was approximately 30% in several fields (2 ha in total). Brown and water-soaked symptoms appeared at the base of the outer leaves, and hollow rot at the base of the stem, accompanied by a fishy odor. To identify the causal agent, six infected stem samples were collected and surface sterilized by soaking in 75% ethanol for 60 seconds, rinsed three times with sterile distilled water, and finally cut into pieces (5 × 5 mm) in the sterile water. The extract was streaked on nutrient agar medium. After incubation at 28°C for 24 h, 17 strains were obtained and the colonies of all strains were creamy white, roughly circular, and convex elevation. Six single bacterial strains JC23121001-JC23121006, individually isolated from six different diseased stem samples, were selected as representative strains for further study. For preliminary identification, DNA from the six strains was extracted and identified by 16S rDNA sequencing using the universal primer pair 27F/1492R (Weisburg et al. 1991), and the sequences (accession nos. PP784484 to PP784489) showed 99% query coverage and 99.65% identity to Pectobacterium brasiliense type strain IBSBF1692T (Nabhan et al. 2012). In addition, five housekeeping genes acnA, mdh, mltD, pgi, and proA of the six strains were amplified with specially designed primers (Ma et al. 2007), and the resulting sequences from all six strains were 100% identical. The sequences of the representative strain JC23121001 were deposited into GenBank with accession numbers PP108247, PP066857, PP108248, PP066858, and PP066860, respectively. The maximum-likelihood phylogenetic tree clustered JC23121001 with P. brasiliense type strain IBSBF1692T (Nabhan et al. 2012). The pathogenicity test of six strains was carried out on the six-week-old leaf mustard (cv. Huarong) plants grown in the greenhouse by inoculating 10 µl of each bacterial suspension (108 CFU/ml) on needle-like wounds on the stem base of three healthy leaf mustard plants (Singh et al. 2013). Control plants were treated with sterile distilled water. After inoculation, the plants were incubated at 28°C and 90% relative humidity in a growth chamber. This trial was repeated three times. All inoculated mustard stems were slightly water-soaked after 24 hours and eventually developed into soft rot symptoms, consistent with the original symptoms observed. The control plants remained symptom-free. The strains were re-isolated from inoculated plants and re-identified as P. brasiliense by sequencing five housekeeping genes, thus fulfilling Koch's postulates. P. brasiliense has a broad host range and has been reported on other Brassica species, such as Bok choy (Brassica rapa var. chinensis) in China (Li et al. 2023). Soft rot of leaf mustard caused by Pectobacterium aroidearum has also been reported previously (Chu et al. 2023). To our knowledge, this is the first report of P. brasiliense causing soft rot on leaf mustard in China. The soft rot poses a significant threat to the local leaf mustard industry and requires further research into epidemiology and disease management options.

4.
Plant Dis ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38356278

RESUMEN

Mongolian snake gourd (Trichosanthes kirilowii Maxim) is a precious traditional Chinese herbal medicine and perennial liana plant in the family Cucurbitaceae, and the root, fruit, seed and peel all possess the medicinal value (Zhang et al. 2016). During 2021-2022, the root rot was observed in a 20-ha commercial farm and became a major disease limiting Mongolian snake gourd production in Zhenjiang City, Jiangsu Province, China (119°27'E, 32°12'N). Field investigations showed that disease incidence was estimated at approximately 70% and resulted in up to a 50% decrease in total production. Symptoms on snake gourd initially appeared as yellow mottling produced on the surface of the infected new leaves and systemic wilting on the upper leaves. With the development of the infection, the base of the stem began to brown and die, and has lots of filamentous hyphae attached to it. As the lesions coalesced, the whole plant gradually wilted and died. In order to explore the cause of the disease, six infected plants were randomly collected from the commercial farm. The roots of the plants were rinsed in sterile water to remove soil debris, and symptomatic roots were surface sterilized using 75% ethanol for 60s, rinsed three times in sterile water, then plated onto the potato dextrose agar (PDA), and incubated at 25°C for 3 days in the dark. White fungal colonies grew from the tissue pieces, then hyphal tips were transferred to PDA to obtain pure cultures. A total of six isolates with similar morphological characteristics were obtained from six of the infected plants. One representative isolate GL21091501 was chosen for further analysis. At 5 days after inoculation, the colonies on PDA began to grow as white, and with the incubated time was extended, the hyphae turned yellowish-brown with a yellowish-brown center on the reverse side. Observations under a light microscope showed conidia that were falculate, slender and slightly curved, and the cells at both ends were sharp. Macroconidia had four to five septa, measuring 22.4 ~ 33.5 µm. Microconidia without septa, elliptical, measuring 4.36 ~ 9.88 µm. On the tip of aerial hyphae can form conidiophore, and produce macroconidia (Wonglom et al. 2020; Lin et al 2018). The pathogen was typical Fusarium spp. by morphological characteristics. To identify the species level, the mycelia of the representative isolate GL21091501 was used for genomic DNA extraction (Tiangen, China). The internal transcribed spacer (ITS) region and partial translational elongation factor subunit 1-α (TEF-1α) of the cultures were amplified and sequenced using the primer pairs EF1/EF2 and ITS1/ITS4 respectively (White et al. 1990; O'Donnell et al. 1998). The obtained sequences were deposited in GenBank under the accesion numbers OP311409 and OP311410. BLAST searches of the deposited sequences showed 100% identity with the existing TEF sequences (MT563420.1) and ITS sequences (MN539094.1) of Fusarium incarnatum isolates in GenBank. In addition, BLASTn analysis of these in FUSARIUM-ID database showed 99.62% and 100% similarity with F. incarnatum-equiseti species complex (FIESC) NRRL13379 [ITS] and NRRL34004 [TEF-1α]), respectively. Phylogenetic analysis was conducted with the neighbor-joining (NJ) method using MEGA6.0 (Tamura et al. 2007). Combined phylogenetic analysis revealed that the isolate shared a common clade with the reference sequence of F. incarnatum in the F. incarnatum-equiseti species complex. Therefore, according to morphological and molecular characteristics confirming the identity of the isolated pathogen as F. incarnatum. In order to fulfill Koch's postulates, fresh isolate GL21091501 hyphae were cut into 3 × 3 mm agar plugs from a 7 cm PDA plate and inoculated in 200 mL the Potato Dextrose (PD) liquid medium on a shaker at 170 rpm, 25°C for 5 days. Spores were filtered through four layers of gauze, adjusted to 1 × 106 spores/ml with sterilized water. Then Mongolian snake gourd seedlings at the two true leaves stage were transplanted in (15-cm-diameter) pots (1 plants/pot) filled with mixture of sterilized soil: vermiculite: pearlite (2:1:1, v/v). The pathogenicity test was conducted on seedlings plants by root irrigation method (50 ml/plant, 1×106 conidia/mL), control plants were irrigation with sterilized water (50 ml/plant). Each treatment was repeated three times. After 15 days, all inoculated plants showed the same symptoms observed on the original diseased plants in the field, whereas, the control plants remained symptomless. The same pathogen was successfully re-isolated from the inoculated plants, and identical to those of the originals based on morphological and sequence data. To our knowledge, this is the first report of F. incarnatum causing root rot on Mongolian snake gourd in China. F. incarnatum has been reported to cause root and stem rot in many plants worldwide, including muskmelon (Wonglom et al. 2020), Cucurbita pepo (Thomas et al. 2019) and Bambusa multiplex (Lin et al. 2018). This discovery is of great importance for Mongolian snake gourd planters because the fungus is accurately identified in a certain geographic area and effective field management strategies are necessary to control this disease.

5.
Plant Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687572

RESUMEN

In April 2023, soft rot symptoms were observed in broccoli (Brassica oleracea L. var. italica) commercial fields in Songming County, Yunnan province, China (103°12'E, 25°31'N). The disease incidence in these fields (6 ha in size) was high, exceeding 50%, and it caused significant yield loss. The affected plants displayed characteristic symptoms, with the roots and stems of broccoli becoming soft, yellowish-brown, rotten, and emitting a foul odor. To identify the causal agent, soft rot symptomatic stems were surface sterilized by dipping them in 75% ethanol for 30 seconds, followed by three successive rinses with sterile distilled water. Tissue specimens were then plated onto nutrient agar (NA) plates and incubated at 28°C for 24 hours. (Wang et al. 2022). Three representative bacterial isolates HYC22041801-HYC22041803 from broccoli were selected for further analysis. The colonies on NA plates appeared as white, small, round, and translucent with smooth edges. Physiological and biochemical tests were performed, along with 96 phenotypic screenings using the BIOLOG GENIII microplate system (Biolog, Hayward, CA, USA). Three isolates were negative for D-arabitol, maltose, and sorbitol, but were positive for cellobiose, α-D-glucose, sucrose, glycerol and gentiobiose tests, which are consistent with the reported type strain P. polaris NIBIO1006T (Chen et al. 2021). Total genomic DNA was extracted from three bacterial isolates using the QIAamp DNA Mini Kit (QIAGEN, USA). The 16S rRNA region and nine housekeeping genes (gapA, icdA, mdh, mtlD, pel, pgi, pmrA, proA and rpoS) were amplified with universal primers 27F/1492R (Monciardini et al., 2006) and designed specific primers (Xie et al., 2018), respectively. All amplicons were sequenced and deposited in GenBank with accession numbers ON723841-ON723843 and ON723846-ON723872. The BLASTn analysis of the 16S rRNA amplicons confirmed that the isolates HYC22041801-HYC22041803 belonged to the genus Pectobacterium. Phylogenetic trees based on 16S rRNA gene sequences and multilocus sequence analysis of other nine housekeeping genes of the three isolates were constructed and the results revealed that three isolates clustered with P. polaris type strain NIBIO1006T, which was previously isolated from potato (Dees et al., 2017). To confirm the pathogenicity, nine broccoli seedlings were stab inoculated with a bacterial suspension (108 CFU·ml-1), while sterile distilled liquid LB medium was used as a negative control. The seedlings were kept at 80% relative humidity and 28°C in a growth chamber. Three trials were conducted per isolate (HYC22041801-HYC22041803). After 3 days, the inoculated petioles showed soft rot symptoms similar to those observed initially in the field, while control plants remained asymptomatic. All three isolates were re-isolated successfully from symptomatic tissues to complete Koch's postulates. P. polaris has been previously reported as the causative agent of blackleg in potato in several countries, including Norway, Poland, Russia, and China (Handique et al. 2022; Wang et al. 2022). Additionally, it was reported to cause soft rot in Chinese cabbage in China (Chen et al. 2021). However, this is the first report of P. polaris causing soft rot disease in broccoli in China. This discovery is of great importance for vegetable growers because this bacterium is well established on Cruciferous vegetables in the local area, and effective measures are needed to manage this disease.

6.
Proc Natl Acad Sci U S A ; 117(16): 8711-8718, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32253309

RESUMEN

Here we describe the development of a humidity-responsive sheet of paper that is derived solely from natural pollen. Adaptive soft material components of the paper exhibit diverse and well-integrated responses to humidity that promote shape reconfiguration, actuation, and locomotion. This mechanically versatile and nonallergenic paper can generate a cyclically high contractile stress upon water absorption and desorption, and the rapid exchange of water drives locomotion due to hydrodynamic effects. Such dynamic behavior can be finely tuned by adjusting the structure and properties of the paper, including thickness, surface roughness, and processing conditions, analogous to those of classical soapmaking. We demonstrate that humidity-responsive paper-like actuators can mimic the blooming of the Michelia flower and perform self-propelled motion. Harnessing the material properties of bioinspired systems such as pollen paper opens the door to a wide range of sustainable, eco-friendly, and biocompatible material innovation platforms for applications in sensing, actuation, and locomotion.

7.
Plant Dis ; 107(7): 2153-2159, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36548917

RESUMEN

Cucumber leaf spot, caused by Corynespora cassiicola, is a serious disease of cucumbers in greenhouses. Due to the frequent application of succinate dehydrogenase inhibitors (SDHIs), resistance caused by point mutations in the SDHB/C/D gene has been reported. Different mutations lead to different resistance levels, and mutations vary over time and regions. This means that it is necessary to know the type of mutation in the field to select the appropriate SDHIs. Here, the sensitivity of mutations to SDHIs was determined, and eight resistance patterns were obtained: pattern I (BosVHR, FluoMR, PenHR, CarR); pattern II (BosMR, FluoSS, PenS, CarS); pattern III (BosVHR, FluoSS, PenLR, CarS); pattern IV (BosLR, FluoLR, PenS, CarR); pattern V (BosMR, FluoLR, PenS, CarS); pattern VI (BosMR, FluoLR, PenLR, CarS); pattern VII (BosVHR, FluoHR, PenHR, CarS); and pattern VIII (BosLR, FluoLR, PenLR, CarS). We successfully established nine allele-specific PCR (AS-PCR) assays that can detect mutation types. The sensitivity and specificity of AS-PCR were also determined. The sensitivity results showed that most of the detection thresholds of the AS-PCR assays were 100 pg/µl, while the AS-PCR assay of the B-H278R and D-G109V mutations exhibited high sensitivity, with 10 pg/µl. To validate the use of the developed AS-PCR assay, DNA from leaves inoculated with known mutations was extracted, detected by AS-PCR, and sequenced. The results showed good similarity between the two methods. Additionally, to rapidly detect mutations in the CcSdhD gene, we developed a single-tube multiplex allele-specific PCR (MAS-PCR) assay. In conclusion, AS-PCR and MAS-PCR were established for mutation detection and targeted control of CLS.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Ácido Succínico , Succinato Deshidrogenasa/genética , Fungicidas Industriales/farmacología , Mutación , Succinatos
8.
Phytopathology ; 112(8): 1659-1666, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35080436

RESUMEN

Corynespora leaf spot caused by Corynespora cassiicola is an important foliar disease in cucumber. Succinate dehydrogenase inhibitors are the main fungicides used to control this disease. With the application of succinate dehydrogenase inhibitors (SDHIs) in the field, boscalid-resistant isolates have been continuously detected in the field. Resistance monitoring programs were performed to investigate the frequency and genotypes of resistant isolates. In our resistance monitoring, the frequency of resistant isolates rapidly increased from 9.68 to 85.88% in 2005 to 2020. Nine genotypes conferring SDHI resistance were found in resistant isolates, with different levels of resistance to SDHIs: B-H278R, B-H278L, B-H278Y, B-I280V, C-N75S, C-S73P, D-D95E, D-H105R, and D-G109V. The first sdh mutation was detected in Hebei Province in China, conferring an amino acid substitution at codon 278 in the sdhB subunit from histidine to tyrosine (B-H278Y), and it was the dominant resistance genotype in 2014 to 2015. Subsequently, other genotypes were gradually detected in the field, and the dominant mutations varied across years and across regions. The newest genotype (B-H278L) conferring SDHI resistance was found in 2020. To the best of our knowledge, this is the first report of C. cassiicola in cucumber. To date, multiple resistance to SDHIs, quinone outside inhibitors, benzimidazole fungicides, and dicarboximide fungicides have been detected, accounting for 75.64% of SDHI-resistant isolates. Therefore, the above four fungicides must be strictly restricted, and further monitoring work in other provinces with more isolates should be performed in the future.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Ascomicetos , Compuestos de Bifenilo , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Niacinamida/análogos & derivados , Enfermedades de las Plantas , Succinato Deshidrogenasa/genética
9.
Macromol Rapid Commun ; 41(21): e2000155, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32627910

RESUMEN

Pollen, the male microgametophyte of seed plants, is commonly used as a food and health supplement. Here, a facile method to transform sunflower pollen into pH-responsive microgels with tailored properties is presented. The structure and morphology of the pollen microgel are characterized by scanning electron microscopy, confocal laser scanning microscopy, and dynamic image particle analysis based on potassium hydroxide treatment with various incubation time and concentration. These pollen microgels exhibit significant volume change under different pH conditions and Ca+ /ethylenediaminetetraacetic acid treatment. The results describe the fundamental properties of pollen microgels and pave the way for its future applications, such as "smart" drug carriers.


Asunto(s)
Microgeles , Portadores de Fármacos , Geles , Concentración de Iones de Hidrógeno , Polen
10.
J Oral Maxillofac Surg ; 78(2): 288-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31622571

RESUMEN

PURPOSE: There are many methods to reconstruct the mandible, but they are often accompanied by trauma, which can lead to scarring of the maxillofacial skin. The purpose of this study was to show the utility of a minimally invasive method for reconstruction of the mandible with nonvascularized iliac bone grafts without a skin scar, as well as to evaluate the success rate and complications. PATIENTS AND METHODS: This was a retrospective case series. We retrospectively analyzed patients who underwent transoral resection of benign mandibular pathologies, followed by nonvascularized iliac bone graft reconstruction. The primary outcome variable was the success rate of the bone grafts. Secondary outcome variables were postoperative complications at the grafted bone recipient and donor sites, the long-term absorptivity of grafted bone, and the type of mandibular defect. We computed descriptive statistics or performed the χ2 test for each variable. RESULTS: Overall, 54 patients were included in the study, including 21 male and 33 female patients, with an age range of 10 to 65 years. The complete survival rate was 87.0% (47 of 54 patients), and the partial survival rate was 98.1% (53 of 54). The average bone absorption rate 3 years after surgery was 1.8 to 30.7%. We propose a new classification method for mandibular defects based on the extent of the tumor, location of the osteotomy, and degree of surgical difficulty. CONCLUSIONS: Intraoral nonvascularized iliac bone grafting is a highly successful minimally invasive method for mandibular reconstruction. It is also one of the best methods for mandibular reconstruction in patients with benign mandibular tumors without soft tissue involvement.


Asunto(s)
Neoplasias Mandibulares/cirugía , Reconstrucción Mandibular , Procedimientos de Cirugía Plástica , Adolescente , Adulto , Anciano , Trasplante Óseo , Niño , Cicatriz , Femenino , Humanos , Ilion , Masculino , Mandíbula/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
11.
Physiol Plant ; 167(2): 217-231, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30467856

RESUMEN

Ammonium (NH4 + ) represents a primary nitrogen source for many plants, its effective transport into and between tissues and further assimilation in cells determine greatly plant nitrogen use efficiency. However, biological components involved in NH4 + movement in woody plants are unclear. Here, we report kinetic evidence for cotton NH4 + uptake and molecular identification of certain NH4 + transporters (AMTs) from cotton (Gossypium hirustum). A substrate-influx assay using 15 N-isotope revealed that cotton possessed a high-affinity transport system with a Km of 58 µM for NH4 + . Sequence analysis showed that GhAMT1.1-1.3 encoded respectively a membrane protein containing 485, 509 or 499 amino acids. Heterologous functionality test demonstrated that GhAMT1.1-1.3 expression mediated NH4 + permeation across the plasma membrane (PM) of yeast and/or Arabidopsis qko-mutant cells, allowing a growth restoration of both mutants on NH4 + . Quantitative PCR measurement showed that GhAMT1.3 was expressed in roots and leaves and markedly up-regulated by N-starvation, repressed by NH4 + resupply and regulated diurnally and age-dependently, suggesting that GhAMT1.3 should be a N-responsive gene. Importantly, GhAMT1.3 expression in Arabidopsis improved plant growth on NH4 + and enhanced total nitrogen accumulation (∼50% more), conforming with the observation of 2-fold more NH4 + absorption by GhAMT1.3-transformed qko plant roots during a 1-h root influx period. Together with its targeting to the PM and saturated transport kinetics with a Km of 72 µM for NH4 + , GhAMT1.3 is suggested to be a high-affinity NH4 + permease that may play a significant role in cotton NH4 + acquisition and utilization, adding a new member in the plant AMT family.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Gossypium/genética , Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Gossypium/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
J Pineal Res ; 64(2)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29149494

RESUMEN

Autophagy modulation is a potential therapeutic strategy for tongue squamous cell carcinoma (TSCC). Melatonin possesses significant anticarcinogenic activity. However, whether melatonin induces autophagy and its roles in cell death in TSCC are unclear. Herein, we show that melatonin induced significant apoptosis in the TSCC cell line Cal27. Apart from the induction of apoptosis, we demonstrated that melatonin-induced autophagic flux in Cal27 cells as evidenced by the formation of GFP-LC3 puncta, and the upregulation of LC3-II and downregulation of SQSTM1/P62. Moreover, pharmacological or genetic blockage of autophagy enhanced melatonin-induced apoptosis, indicating a cytoprotective role of autophagy in melatonin-treated Cal27 cells. Mechanistically, melatonin induced TFE3(Ser321) dephosphorylation, subsequently activated TFE3 nuclear translocation, and increased TFE3 reporter activity, which contributed to the expression of autophagy-related genes and lysosomal biogenesis. Luzindole, a melatonin membrane receptor blocker, or MT2-siRNA partially blocked the ability of melatonin to promote mTORC1/TFE3 signaling. Furthermore, we verified in a xenograft mouse model that melatonin with hydroxychloroquine or TFE3-siRNA exerted a synergistic antitumor effect by inhibiting autophagy. Importantly, TFE3 expression positively correlated with TSCC development and poor prognosis in patients. Collectively, we demonstrated that the melatonin-induced increase in TFE3-dependent autophagy is mediated through the melatonin membrane receptor in TSCC. These data also suggest that blocking melatonin membrane receptor-TFE3-dependent autophagy to enhance the activity of melatonin warrants further attention as a treatment strategy for TSCC.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Melatonina/farmacología , Neoplasias de la Lengua/patología , Adulto , Anciano , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Receptor de Melatonina MT2/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Cell Mol Med ; 21(9): 2199-2210, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28401653

RESUMEN

Immature myeloid cells including myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) promote tumour growth and metastasis by facilitating tumour transformation and angiogenesis, as well as by suppressing antitumour effector immune responses. Therefore, strategies designed to reduce MDSCs and TAMs accumulation and their activities are potentially valuable therapeutic goals. In this study, we show that negative immune checkpoint molecule B7-H3 is significantly overexpressed in human head and neck squamous cell carcinoma (HNSCC) specimen as compared with normal oral mucosa. Using immunocompetent transgenic HNSCC models, we observed that targeting inhibition of B7-H3 reduced tumour size. Flow cytometry analysis revealed that targeting inhibition of B7-H3 increases antitumour immune response by decreasing immunosuppressive cells and promoting cytotoxic T cell activation in both tumour microenvironment and macroenvironment. Our study provides direct in vivo evidence for a rationale for B7-H3 blockade as a future therapeutic strategy to treat patients with HNSCC.


Asunto(s)
Antígenos B7/antagonistas & inhibidores , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Células Mieloides/patología , Animales , Antígenos B7/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Modelos Animales de Enfermedad , Humanos , Macrófagos/patología , Ratones Noqueados , Células Mieloides/metabolismo , Células Supresoras de Origen Mieloide/patología , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
14.
Phys Chem Chem Phys ; 18(43): 29797-29807, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27757446

RESUMEN

Emulsifiers for pesticide microemulsions contain a part of volatile organic compounds (VOCs), and ionic liquids (ILs) are becoming potential substitutes. In order to apply ILs in pesticide microemulsions, the study of interaction between ILs and surfactants is necessary. Therefore, the surface properties and aggregation of anionic surfactant sodium dodecyl sulfate (SDS) in ILs, including N-hexyl-N-methylmorpholinyl bromide ([C6mm][Br]), N-hexyl-N-methylpiperidyl bromide ([C6mp][Br]), N-hexyl-N-methylpyrrolidyl bromide ([C6mpyr][Br]), N-octyl-N-methylpyrrolidyl bromide ([C8mpyr][Br]), N-dodecyl-N-methylpyrrolidyl bromide ([C12mpyr][Br]) and N-hexadecyl-N-methylpyrrolidyl bromide ([C16mpyr][Br]), were investigated in terms of surface tension, conductivity, dynamic light scattering (DLS), viscosity, fluorescence, pseudo-ternary phase diagram and 1H NMR measurements. Generally in agreement, the methods afforded the evaluation of various micellar parameters such as critical micelle concentration (CMC), degree of counterion ionization (α), the maximum surface excess concentration (Γmax), the minimum area per surfactant headgroup (Amin) as well as some thermodynamic parameters, including standard free energy of micellization (ΔG), standard enthalpy of micellization (ΔH) and standard entropy of micellization (ΔS). The results indicated a hydrophobic effect as the primary force of a spontaneous, exothermic, entropy driven micellization process. 1H NMR technique was applied to reveal the solubilization site and interaction of ILs in aqueous SDS micellar solutions. Fluorescence, DLS and viscosity measurements revealed considerable micellar morphologies and various phase behaviors. Furthermore, the 10% difenoconazole microemulsion was successfully prepared and showed good stability and spreadability in mixtures which indicated ILs' potential application in pesticide formulation.

15.
J Biomed Opt ; 29(4): 046002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38633382

RESUMEN

Significance: Head and neck squamous cell carcinoma (HNSCC) has a particularly poor prognosis. Improving the surgical resection boundary, reducing local recurrence, and ultimately ameliorating the overall survival rate are the treatment goals. Aim: To obtain a complete surgical resection (R0 resection), we investigated the use of a fluorescent imaging probe that targets the integrin subtype αvß6, which is upregulated in many kinds of epithelial cancer, using animal models. Approach: αvß6 expression was detected using polymerase chain reaction (PCR) and immunoprotein blotting of human tissues for malignancy. Protein expression localization was observed. αvß6 and epidermal growth factor receptor (EGFR) were quantified by PCR and immunoprotein blotting, and the biosafety of targeting the αvß6 probe material was examined using Cell Counting Kit-8 assays. Indocyanine green (ICG) was used as a control to determine the localization of the probe at the cellular level. In vivo animal experiments were conducted through tail vein injections to evaluate the probe's imaging effect and to confirm its targeting in tissue sections. Results: αvß6 expression was higher than EGFR expression in HNSCC, and the probe showed good targeting in in vivo and in vitro experiments with a good safety profile. Conclusions: The ICG-αvß6 peptide probe is an exceptional and sensitive imaging tool for HNSCC that can distinguish among tumor, normal, and inflammatory tissues.


Asunto(s)
Neoplasias de Cabeza y Cuello , Verde de Indocianina , Animales , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Línea Celular Tumoral , Péptidos/metabolismo , Receptores ErbB , Inmunoproteínas
16.
Pest Manag Sci ; 80(6): 2761-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38314954

RESUMEN

BACKGROUND: The use of pesticides in greenhouse vegetable cultivation is necessary and significant. However, traditional pesticide application methods such as the use of backpack sprayers with water-diluted pesticides have certain drawbacks, e.g., uneven distribution, high labor intensity, and safety risks. RESULTS: In this work, fluazinam ultra-low-volume liquids (Flu-ULVs) were prepared using oily solvents as carriers. The effects of different oils on the physical properties of the preparations were investigated. The Flu-ULV can be sprayed directly using a hand-held ultra-low-volume (ULV) sprayer without dilution with water. Compared with commercial water-based suspension concentrates of fluazinam, the Flu-ULV samples showed better wetting of tomato leaves, better atomization, and more uniform droplet distribution. At a dosage of 300 mL/ha, the coverage rate of tomato leaves ranged from 32.47% to 79.3%, with a droplet deposition density of 556 to 2017 droplets/cm2. Application of Flu-ULVs provided 70.86% control efficacy against gray mold in tomatoes, which was higher than those achieved with reference products. Dermal exposure to Flu-ULVs was also evaluated in greenhouse experiments. The coverage rates for all parts of the operator's body ranged from 0.02% to 0.07%, with deposition volumes of 2.23 to 12.26 µg/cm2. CONCLUSION: Ground ULV spraying of fluazinam was proved to be an effective and safe management option for the control of tomato gray mold in greenhouses. This study laid a foundation for the use of ultra-low volume spray to control vegetable diseases in greenhouse, especially those induced by high humidity environment. © 2024 Society of Chemical Industry.


Asunto(s)
Enfermedades de las Plantas , Solanum lycopersicum , Solanum lycopersicum/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Humanos , Exposición Profesional/prevención & control , Verduras/crecimiento & desarrollo , Verduras/química
17.
Int J Biol Macromol ; 264(Pt 1): 130323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387628

RESUMEN

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most important diseases of brassicas. The antagonistic bacterium Paenibacillus polymyxa ZF129 can suppress clubroot while its effectiveness is often unstable. To control clubroot more effectively, the macrobeads for controlled release of ZF129 were prepared using microencapsulation technology. Macrobeads with various ratios of chitosan (2 % w/w): carrageenan (0.3 % w/v) were prepared by an ionotropic gelation method and the bacteria ZF129 was loaded into macrobeads. The 1:1 chitosan: carrageenan showed the maximum swelling ratio (634 %), and the maximum survival rate (61.52 ± 1.12 %) after freeze-drying. Fourier transform infrared revealed the electrostatic interactions between chitosan and carrageenan. The macrobeads can efficiently release ZF129 strains into phosphate buffer solution and reach equilibrium in 48 h. The maximum number of bacteria cells to be released in the soil was observed after 25-30 days. The control efficacy of ZF129 macrobeads (chitosan: carrageenan, 1:1) and ZF129 culture against clubroot disease was 76.33 ± 3.65 % and 59.76 ± 4.43 % in greenhouse experiments, respectively and the control efficacy was calculated as 60.74 ± 5.00 % for ZF129 macrobeads and 40.94 ± 4.05 % for ZF129 culture under field experiments, respectively. The ZF129 macrobeads had significant growth-promoting effects on pak choi and Chinese cabbage. The encapsulation method described in this study is a prudent approach toward efficient biopesticides utilization with reduced environmental implications.


Asunto(s)
Brassica , Quitosano , Paenibacillus polymyxa , Carragenina , Productos Agrícolas
18.
Microorganisms ; 12(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399655

RESUMEN

Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.

19.
Adv Sci (Weinh) ; : e2402030, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837686

RESUMEN

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aß deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.

20.
Pest Manag Sci ; 79(4): 1604-1614, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36550686

RESUMEN

BACKGROUND: In this work, natural club moss (Lycopodium clavatum, LC) spores with a porous surface morphology and highly uniform size distribution were engineered into controlled-release microvehicles for pesticide delivery. As a proof of concept, a widely used fungicide, fluazinam (FLU), was successfully loaded into LC spores and then modified with different amounts of CaCO3 (CaC) to extend the efficacy duration of FLU. Significantly, as the control target of FLU, clubroot disease is a worldwide destructive disease of cruciferous crops, and its development is favored by acidic soils and can be suppressed at high Ca concentrations. RESULTS: Fabricated FLU@LC-CaC microcapsules, FLU loading and CaCO3 deposition were systematically characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The as-prepared FLU@LC-CaC microcapsules showed sustained-release behaviors and were potentially able to supplement the Ca concentration in acidic environments. This approach synergistically enhanced in vivo bioactivity for the on-demand control of clubroot disease. An in vivo bioassay revealed that the control efficacy of FLU@LC-CaC against clubroot disease in pak choi (Brassica chinensis) (66.4%) was 1.7-fold higher than that of a commercial FLU suspension concentrate (38.2%) over the course of the cultivation period (35 days). CONCLUSIONS: This work provides new ideas not only for developing eco-friendly and scalable microvehicles for pesticide delivery based on natural sporopollen, but also for unconventional research perspectives in on-demand pest management based on their occurrence characteristics. © 2022 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Preparaciones de Acción Retardada , Carbonato de Calcio/química , Cápsulas/química , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA