Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798090

RESUMEN

The CC chemokine ligand 2 (CCL2)/CC chemokine receptor 2 axis plays key roles in the pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection. We previously reported that exposure of monocyte-derived macrophages (MDMs) to CCL2 neutralizing antibody (αCCL2 Ab) restricted HIV-1 replication at post-entry steps of the viral life cycle. This effect was associated with induction of transcripts coding for innate antiviral proteins, amongst which apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3A (APOBEC3A) and radical S-adenosyl methionine domain containing 2 (RSAD2). This study aimed at identifying the signaling pathways involved in induction of these factors by CCL2 blocking in MDMs. Through a combination of pharmacologic inhibition, quantitative RT-PCR, western blotting, and confocal laser-scanning microscopy, we demonstrated that CCL2 neutralization activates the canonical NF-kB and JAK/STAT pathways, as assessed by time-dependent phosphorylation of IkB, STAT1, and STAT3 and p65 nuclear translocation. Furthermore, pharmacologic inhibition of I kappa B kinase and JAKs strongly reduced APOBEC3A and RSAD2 transcript accumulation elicited by αCCL2 Ab treatment. Interestingly, exposure of MDMs to αCCL2 Ab resulted in induction of IL-6 family cytokines, and interfering with glycoprotein 130, the common signal-transducing receptor subunit shared by these cytokines, inhibited APOBEC3A and RSAD2 up-regulation triggered by CCL2 neutralization. These results provide novel insights into the signal transduction pathways underlying the activation of innate responses triggered by CCL2 neutralization in macrophages. Since this response was found to be associated with protective antiviral effects, the new findings may help design innovative therapeutic approaches targeting CCL2 to strengthen host innate immunity.

2.
Viruses ; 13(2)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672349

RESUMEN

Integrase-defective lentiviral vectors (IDLVs) have been used as a safe and efficient delivery system in several immunization protocols in murine and non-human primate preclinical models as well as in recent clinical trials. In this work, we validated in preclinical murine models our vaccine platform based on IDLVs as delivery system for cancer immunotherapy. To evaluate the anti-tumor activity of our vaccine strategy we generated IDLV delivering ovalbumin (OVA) as a non-self-model antigen and TRP2 as a self-tumor associated antigen (TAA) of melanoma. Results demonstrated the ability of IDLVs to eradicate and/or controlling tumor growth after a single immunization in preventive and therapeutic approaches, using lymphoma and melanoma expressing OVA. Importantly, LV-TRP2 but not IDLV-TRP2 was able to break tolerance efficiently and prevent tumor growth of B16F10 melanoma cells. In order to improve the IDLV efficacy, the human homologue of murine TRP2 was used, showing the ability to break tolerance and control the tumor growth. These results validate the use of IDLV for cancer therapy.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Vectores Genéticos/genética , Inmunoterapia , Integrasas/metabolismo , Lentivirus/genética , Melanoma/inmunología , Melanoma/terapia , Animales , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Vectores Genéticos/metabolismo , Humanos , Integrasas/genética , Oxidorreductasas Intramoleculares/administración & dosificación , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Lentivirus/enzimología , Lentivirus/metabolismo , Masculino , Melanoma/genética , Ratones , Ratones Endogámicos C57BL , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA