Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2401729121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768345

RESUMEN

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that glycosylates myriad intracellular proteins and cleaves the transcriptional coregulator Host Cell Factor 1 to regulate cell cycle processes. Via these catalytic activities as well as noncatalytic protein-protein interactions, OGT maintains cell homeostasis. OGT's tetratricopeptide repeat (TPR) domain is important in substrate recognition, but there is little information on how changing the TPR domain impacts its cellular functions. Here, we investigate how altering OGT's TPR domain impacts cell growth after the endogenous enzyme is deleted. We find that disrupting the TPR residues required for OGT dimerization leads to faster cell growth, whereas truncating the TPR domain slows cell growth. We also find that OGT requires eight of its 13 TPRs to sustain cell viability. OGT-8, like the nonviable shorter OGT variants, is mislocalized and has reduced Ser/Thr glycosylation activity; moreover, its interactions with most of wild-type OGT's binding partners are broadly attenuated. Therefore, although OGT's five N-terminal TPRs are not essential for cell viability, they are required for proper subcellular localization and for mediating many of OGT's protein-protein interactions. Because the viable OGT truncation variant we have identified preserves OGT's essential functions, it may facilitate their identification.


Asunto(s)
N-Acetilglucosaminiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Humanos , Repeticiones de Tetratricopéptidos , Glicosilación , Factor C1 de la Célula Huésped/metabolismo , Factor C1 de la Célula Huésped/genética , Células HEK293 , Dominios Proteicos , Proliferación Celular , Supervivencia Celular , Animales , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33419956

RESUMEN

O-GlcNAc transferase (OGT), found in the nucleus and cytoplasm of all mammalian cell types, is essential for cell proliferation. Why OGT is required for cell growth is not known. OGT performs two enzymatic reactions in the same active site. In one, it glycosylates thousands of different proteins, and in the other, it proteolytically cleaves another essential protein involved in gene expression. Deconvoluting OGT's myriad cellular roles has been challenging because genetic deletion is lethal; complementation methods have not been established. Here, we developed approaches to replace endogenous OGT with separation-of-function variants to investigate the importance of OGT's enzymatic activities for cell viability. Using genetic complementation, we found that OGT's glycosyltransferase function is required for cell growth but its protease function is dispensable. We next used complementation to construct a cell line with degron-tagged wild-type OGT. When OGT was degraded to very low levels, cells stopped proliferating but remained viable. Adding back catalytically inactive OGT rescued growth. Therefore, OGT has an essential noncatalytic role that is necessary for cell proliferation. By developing a method to quantify how OGT's catalytic and noncatalytic activities affect protein abundance, we found that OGT's noncatalytic functions often affect different proteins from its catalytic functions. Proteins involved in oxidative phosphorylation and the actin cytoskeleton were especially impacted by the noncatalytic functions. We conclude that OGT integrates both catalytic and noncatalytic functions to control cell physiology.


Asunto(s)
Proliferación Celular/genética , Fibroblastos/metabolismo , Factor C1 de la Célula Huésped/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Fibroblastos/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Prueba de Complementación Genética , Glicosilación , Células HEK293 , Factor C1 de la Célula Huésped/metabolismo , Humanos , Redes y Vías Metabólicas/genética , Ratones , Anotación de Secuencia Molecular , N-Acetilglucosaminiltransferasas/deficiencia , Proteolisis
3.
Nucleic Acids Res ; 48(10): 5656-5669, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32329777

RESUMEN

Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of the enzyme that installs O-GlcNAc (O-GlcNAc transferase, or OGT) and the enzyme that removes O-GlcNAc (O-GlcNAcase, or OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell's transcriptional regime.


Asunto(s)
Acetilglucosamina/metabolismo , Glicósido Hidrolasas/genética , Intrones , N-Acetilglucosaminiltransferasas/genética , Empalme del ARN , Línea Celular , Glicósido Hidrolasas/metabolismo , Células HEK293 , Humanos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA