Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Stem Cells ; 39(10): 1362-1381, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043863

RESUMEN

Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Neurogénesis , Receptor de Adenosina A2A , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Ratas , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 34-44, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28939435

RESUMEN

Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6month-old (mo)) and late (10mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2+ and synaptophysin+cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10mo YAC128 SVZ-derived cells. Interestingly, 6mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.


Asunto(s)
Enfermedad de Huntington/patología , Ventrículos Laterales/patología , Células-Madre Neurales/patología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Índice de Severidad de la Enfermedad
3.
Biochem Biophys Res Commun ; 483(4): 1069-1077, 2017 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-27485547

RESUMEN

Mitochondria play a relevant role in Ca2+ buffering, governing energy metabolism and neuronal function. Huntington's disease (HD) and Alzheimer's disease (AD) are two neurodegenerative disorders that, although clinically distinct, share pathological features linked to selective brain damage. These include mitochondrial dysfunction, intracellular Ca2+ deregulation and mitochondrial Ca2+ handling deficits. Both diseases are associated with misfolding and aggregation of specific proteins that physically interact with mitochondria and interfere with endoplasmic reticulum (ER)/mitochondria-contact sites. Cumulating evidences indicate that impairment of mitochondrial Ca2+ homeostasis underlies the susceptibility to selective neuronal death observed in HD and AD; however data obtained with different models and experimental approaches are not always consistent. In this review, we explore the recent literature on deregulation of mitochondrial Ca2+ handling underlying the interplay between mitochondria and ER in HD and AD-associated neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Animales , Homeostasis , Humanos
4.
Biochim Biophys Acta ; 1832(12): 2191-203, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994613

RESUMEN

Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aß) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aß1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aß1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aß1-40 concomitantly with caspase-12 activation. Furthermore, Aß1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aß-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aß1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Encéfalo/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endotelio Vascular/patología , Fragmentos de Péptidos/farmacología , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Etiquetado Corte-Fin in Situ , L-Lactato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Necrosis , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas
5.
Mol Cell Neurosci ; 52: 1-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23026561

RESUMEN

Previously we reported that amyloid-ß (Aß) leads to endoplasmic reticulum (ER) stress in cultured cortical neurons and that ER-mitochondria Ca(2+) transfer is involved in Aß-induced apoptotic neuronal cell death. In cybrid cells which recreate the defect in mitochondrial cytochrome c oxidase (COX) activity observed in platelets from Alzheimer's disease (AD) patients, we have shown that mitochondrial dysfunction affects the ER stress response triggered by Aß. Here, we further investigated the impact of COX inhibition on Aß-induced ER dysfunction using a neuronal model. Primary cultures of cortical neurons were challenged with toxic concentrations of Aß upon chemical inhibition of COX with potassium cyanide (KCN). ER Ca(2+) homeostasis was evaluated under these conditions, together with the levels of ER stress markers, namely the chaperone GRP78 and XBP-1, a mediator of the ER unfolded protein response (UPR). We demonstrated that COX inhibition potentiates the Aß-induced depletion of ER Ca(2+) content. KCN pre-treatment was also shown to enhance the rise of cytosolic Ca(2+) levels triggered by Aß and thapsigargin, a widely used ER stressor. This effect was reverted in the presence of dantrolene, an inhibitor of ER Ca(2+) release through ryanodine receptors. Similarly, the increase in GRP78 and XBP-1 protein levels was shown to be higher in neurons treated with Aß or thapsigargin in the presence of KCN in comparison with levels determined in neurons treated with the neurotoxins alone. Although the decrease in cell survival, the activation of caspase-9- and -3-mediated apoptotic cell death observed in Aß- and thapsigargin-treated neurons were also potentiated by KCN, this effect is less pronounced than that observed in Ca(2+) signalling and UPR. Furthermore, in neurons treated with Aß, the potentiating effect of the COX inhibitor in cell survival and death was not prevented by dantrolene. These results show that inhibition of mitochondrial COX activity potentiates Aß-induced ER dysfunction and, to a less extent, neuronal cell death. Furthermore, data supports that the effect of impaired COX on Aß-induced cell death occurs independently of Ca(2+) release through ER ryanodine receptors. Together, our data demonstrate that mitochondria dysfunction in AD enhances the neuronal susceptibility to toxic insults, namely to Aß-induced ER stress, and strongly suggest that the close communication between ER and mitochondria can be a valuable future therapeutic target in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apoptosis/fisiología , Corteza Cerebral/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Mitocondrias/metabolismo , Neuronas/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Western Blotting , Ratas , Ratas Wistar
6.
Cells ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334639

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/patología , Apoptosis
7.
Mech Ageing Dev ; 218: 111912, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266781

RESUMEN

The global population over 60 years old is projected to reach 1.5 billion by 2050. Understanding age-related disorders and gender-specificities is crucial for a healthy aging. Reliable age-related biomarkers are needed, preferentially obtained through non-invasive methods. Urine-derived stem cells (UDSCs) can be easily obtained, although a detailed bioenergetic characterization, according to the donor aging, remain unexplored. UDSCs were isolated from young and elderly adult women (22-35 and 70-94 years old, respectively). Surprisingly, UDSCs from elderly subjects exhibited significantly higher maximal oxygen consumption and bioenergetic health index than those from younger individuals, evaluated through oxygen consumption rate. Exploratory data analysis methods were applied to engineer a minimal subset of features for the classification and stratification of UDSCs. Additionally, RNAseq of UDSCs was performed to identify age-related transcriptional changes. Transcriptional analysis revealed downregulation of genes related to glucuronidation and estrogen metabolism, and upregulation of inflammation-related genes in UDSCs from elderly individuals. This study demonstrates unexpected differences in the UDSCs' OCR between young and elderly individuals, revealing improved bioenergetics in concurrent with an aged-like transcriptome signature. UDSCs offer a non-invasive model for studying age-related changes, holding promise for aging research and therapeutic studies.


Asunto(s)
Metabolismo Energético , Transcriptoma , Anciano , Humanos , Femenino , Envejecimiento/genética , Envejecimiento/metabolismo , Biomarcadores/metabolismo , Células Madre/metabolismo
8.
Neurochem Res ; 38(4): 797-806, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23389658

RESUMEN

Alzheimer's disease, the most prevalent age-related neurodegenerative disease, is characterized by the presence of extracellular senile plaques composed of amyloid-beta (Aß) peptide and intracellular neurofibrillary tangles. More than 50 % of Alzheimer's disease (AD) patients also exhibit abundant accumulation of α-synuclein (α-Syn)-positive Lewy bodies. This Lewy body variant of AD (LBV-AD) is associated with accelerated cognitive dysfunction and progresses more rapidly than pure AD. In addition, it has been suggested that Aß and α-Syn can directly interact. In this study we investigated the effect of α-Syn on Aß-induced toxicity in cortical neurons. In order to mimic the intracellular accumulation of α-Syn observed in the brain of LBV-AD patients, we used valproic acid (VPA) to increase its endogenous expression levels. The release of α-Syn from damaged presynaptic terminals that occurs during the course of the disease was simulated by challenging cells with recombinant α-Syn. Our results showed that either VPA-induced α-Syn upregulation or addition of recombinant α-Syn protect primary cortical neurons from soluble Aß1-42 decreasing the caspase-3-mediated cell death. It was also found that neuroprotection against Aß-induced toxicity mediated by α-Syn overexpression involves the PI3K/Akt cell survival pathway. Furthermore, recombinant α-Syn was shown to directly interact with Aß1-42 and to decrease the levels of Aß1-42 oligomers, which might explain its neuroprotective effect. In conclusion, we demonstrate that either endogenous or exogenous α-Syn can be neuroprotective against Aß-induced cell death, suggesting a cell defence mechanism during the initial stages of the mixed pathology.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , alfa-Sinucleína/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 3/metabolismo , Corteza Cerebral/citología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Ratas , Ácido Valproico/farmacología , alfa-Sinucleína/metabolismo
9.
J Pathol ; 226(5): 687-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22190226

RESUMEN

The accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), which involves a set of protein signalling pathways and transcription factors that re-establish homeostasis and normal ER function, adapting cells to ER stress. If this adaptive response is insufficient, the UPR triggers an apoptotic program to eliminate irreversibly damaged cells. Recent observations suggest that ER stress plays an important role in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease, which is characterized by the deposition of amyloid-beta (Aß) and hyperphosphorylated tau in susceptible brain regions. Moreover, several studies demonstrate that Aß induces UPR activation, which in turn promotes tau phosphorylation. In the study by Nijholt and colleagues, reported in the current issue of The Journal of Pathology, the association between UPR activation and tau pathology was investigated in the brain of patients diagnosed with sporadic or familial tauopathies in which Abeta deposits are absent. The authors described that increased levels of UPR activation markers are predominantly observed in neurons within the hippocampus, being correlated with early tau phosphorylation. These findings suggest that UPR activation, which occurs in an Abeta-independent manner, is an early event during tau pathology and point to a functional crosstalk between these molecular mechanisms in tauopathies. A better understanding of UPR activation in tauopathies can thus contribute to the design of new therapeutic strategies with the purpose of promoting neuronal cell survival in these disorders.


Asunto(s)
Hipocampo/química , Tauopatías/metabolismo , Respuesta de Proteína Desplegada , Proteínas tau/análisis , Femenino , Humanos , Masculino
10.
Front Mol Neurosci ; 16: 1229728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965041

RESUMEN

Stem cells have potential applications in the field of neurological diseases, as they allow for the development of new biological models. These models can improve our understanding of the underlying pathologies and facilitate the screening of new therapeutics in the context of precision medicine. Stem cells have also been applied in clinical tests to repair tissues and improve functional recovery. Nevertheless, although promising, commonly used stem cells display some limitations that curb the scope of their applications, such as the difficulty of obtention. In that regard, urine-derived cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, their obtaining can be challenging due to the low yield and complexity of the multi-phased and typically expensive differentiation protocols. As an alternative, urine-derived stem cells (UDSCs), included within the population of urine-derived cells, present a mesenchymal-like phenotype and have shown promising properties for similar purposes. Importantly, UDSCs have been differentiated into neuronal-like cells, auspicious for disease modeling, while overcoming some of the shortcomings presented by other stem cells for these purposes. Thus, this review assesses the current state and future perspectives regarding the potential of UDSCs in the ambit of neurological diseases, both for disease modeling and therapeutic applications.

11.
Cells ; 12(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37443797

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Exosomas , Vesículas Extracelulares , Enfermedades Neurodegenerativas , Humanos , Neuronas Motoras
12.
Cells ; 11(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35011699

RESUMEN

The prevalence of Alzheimer's disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-ß (Aß) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1ß, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1ß, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPß at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aß pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Regulación hacia Arriba
13.
Mol Neurobiol ; 59(10): 6373-6396, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933467

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age-/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age-/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naïve Bayes classification. Considering the group as a target, the features that contributed to better segregation of control, undSOD1, and mutSOD1 were found to be the protein levels of Tfam and glycolytic ATP production rate. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation in experimental endpoints in lymphoblasts were found between cohorts, which may be due to the age or sex of the donor. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor, and although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints, especially protein levels of Tfam and glycolytic ATP production rate, that may have a diagnostic and therapeutic interest.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Adenosina Trifosfato , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Teorema de Bayes , Humanos , Mutación/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética
14.
Front Neurosci ; 14: 578409, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584169

RESUMEN

The complex, nanoscopic scale of neuronal function, taking place at dendritic spines, axon terminals, and other minuscule structures, cannot be adequately resolved using standard, diffraction-limited imaging techniques. The last couple of decades saw a rapid evolution of imaging methods that overcome the diffraction limit imposed by Abbe's principle. These techniques, including structured illumination microscopy (SIM), stimulated emission depletion (STED), photo-activated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), among others, have revolutionized our understanding of synapse biology. By exploiting the stochastic nature of fluorophore light/dark states or non-linearities in the interaction of fluorophores with light, by using modified illumination strategies that limit the excitation area, these methods can achieve spatial resolutions down to just a few tens of nm or less. Here, we review how these advanced imaging techniques have contributed to unprecedented insight into the nanoscopic organization and function of mammalian neuronal presynapses, revealing new organizational principles or lending support to existing views, while raising many important new questions. We further discuss recent technical refinements and newly developed tools that will continue to expand our ability to delve deeper into how synaptic function is orchestrated at the nanoscopic level.

15.
Neurobiol Aging ; 92: 98-113, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32417750

RESUMEN

During aging, lifestyle-related factors shape the brain's response to insults and modulate the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). This is the case for chronic hyperglycemia associated with type 2 diabetes, which reduces the brain's ability to handle the neurodegenerative burden associated with AD. However, the mechanisms behind the effects of chronic hyperglycemia in the context of AD are not fully understood. Here, we show that newly generated neurons in the hippocampal dentate gyrus of triple transgenic AD (3xTg-AD) mice present increased dendritic arborization and a number of synaptic puncta, which may constitute a compensatory mechanism allowing the animals to cope with a lower neurogenesis rate. Contrariwise, chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and reduces the levels of ß-catenin, a key intrinsic modulator of neuronal maturation. Moreover, synaptic facilitation is depressed in hyperglycemic 3xTg-AD mice, accompanying the defective hippocampal-dependent memory. Our data suggest that hyperglycemia evokes cellular and functional alterations that accelerate the onset of AD-related symptoms, namely memory impairment.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Hipocampo/patología , Hiperglucemia/patología , Memoria , Neurogénesis , Enfermedad de Alzheimer/complicaciones , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Hiperglucemia/complicaciones , Masculino , Ratones Transgénicos
16.
Mol Ther Nucleic Acids ; 19: 1219-1236, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32069773

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia worldwide, characterized by progressive memory impairment, behavioral changes, and, ultimately, loss of consciousness and death. Recently, microRNA (miRNA) dysfunction has been associated with increased production and impaired clearance of amyloid-ß (Aß) peptides, whose accumulation is one of the most well-known pathophysiological markers of this disease. In this study, we identified several miRNAs capable of targeting key proteins of the amyloidogenic pathway. The expression of one of these miRNAs, miR-31, previously found to be decreased in AD patients, was able to simultaneously reduce the levels of APP and Bace1 mRNA in the hippocampus of 17-month-old AD triple-transgenic (3xTg-AD) female mice, leading to a significant improvement of memory deficits and a reduction in anxiety and cognitive inflexibility. In addition, lentiviral-mediated miR-31 expression significantly ameliorated AD neuropathology in this model, drastically reducing Aß deposition in both the hippocampus and subiculum. Furthermore, the increase of miR-31 levels was enough to reduce the accumulation of glutamate vesicles in the hippocampus to levels found in non-transgenic age-matched animals. Overall, our results suggest that miR-31-mediated modulation of APP and BACE1 can become a therapeutic option in the treatment of AD.

17.
Sci Rep ; 9(1): 8384, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182747

RESUMEN

Evidence points to a dual role of histamine in microglia-mediated neuroinflammation, a key pathological feature of several neurodegenerative pathologies. Moreover, histamine has been suggested as a modulator of adult neurogenesis. Herein, we evaluated the effect of histamine in hippocampal neuroinflammation and neurogenesis under physiological and inflammatory contexts. For that purpose, mice were intraperitoneally challenged with lipopolysaccharide (LPS) followed by an intrahippocampal injection of histamine. We showed that histamine per se triggered glial reactivity and induced mild long-term impairments in neurogenesis, reducing immature neurons dendritic volume and complexity. Nevertheless, in mice exposed to LPS (2 mg/Kg), histamine was able to counteract LPS-induced glial activation and release of pro-inflammatory molecules as well as neurogenesis impairment. Moreover, histamine prevented LPS-induced loss of immature neurons complexity as well as LPS-induced loss of both CREB and PSD-95 proteins (essential for proper neuronal activity). Altogether, our results highlight histamine as a potential therapeutic agent to treat neurological conditions associated with hippocampal neuroinflammation and neurodegeneration.


Asunto(s)
Histamina/farmacología , Inflamación/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Ratones , Microglía/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
18.
Transl Psychiatry ; 9(1): 143, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028242

RESUMEN

Chronic stress, a suggested precipitant of brain pathologies, such as depression and Alzheimer's disease, is known to impact on brain plasticity by causing neuronal remodeling as well as neurogenesis suppression in the adult hippocampus. Although many studies show that stressful conditions reduce the number of newborn neurons in the adult dentate gyrus (DG), little is known about whether and how stress impacts on dendritic development and structural maturation of these newborn neurons. We, herein, demonstrate that chronic stress impacts differentially on doublecortin (DCX)-positive immature neurons in distinct phases of maturation. Specifically, the density of the DCX-positive immature neurons whose dendritic tree reaches the inner molecular layer (IML) of DG is reduced in stressed animals, whereas their dendritic complexity is increased. On the contrary, no change on the density of DCX-positive neurons whose dendritic tree extends to the medial/outer molecular layer (M/OML) of the DG is found under stress conditions, whereas the dendritic complexity of these cells is diminished. In addition, DCX+ cells displayed a more complex and longer arbor in the dendritic compartments located in the granular cell layer of the DG under stress conditions; on the contrary, their dendritic segments localized into the M/OML were shorter and less complex. These findings suggest that the neuroplastic effects of chronic stress on dendritic maturation and complexity of DCX+ immature neurons vary based on the different maturation stage of DCX-positive cells and the different DG sublayer, highlighting the complex and dynamic stress-driven neuroplasticity of immature neurons in the adult hippocampus.


Asunto(s)
Dendritas/patología , Hipocampo/citología , Neuronas/patología , Estrés Psicológico/fisiopatología , Animales , Giro Dentado/patología , Proteína Doblecortina , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/fisiología , Neurogénesis , Plasticidad Neuronal
19.
J Neurochem ; 104(3): 766-76, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17995926

RESUMEN

Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and by the accumulation of the pathogenic form of prion protein, designated PrP(Sc). Recently, we have shown that PrP(106-126) induces endoplasmic reticulum (ER) stress, leading to mitochondrial cytochrome c release, caspase 3 activation and apoptotic death. In order to further clarify the role of mitochondria in ER stress-mediated apoptotic pathway triggered by the PrP peptide, we investigated the effects of PrP(106-126) on the Ntera2 human teratocarcinoma cell line that had been depleted of their mitochondrial DNA, termed NT2 rho0 cells, characterized by the absence of functional mitochondria, as well as on the parental NT2 rho+ cells. In this study, we show that PrP(106-126) induces ER stress in both cell lines, given that ER Ca2+ content is low, glucose-regulated protein 78 levels are increased and caspase 4 is activated. Furthermore, in parental NT2 rho+ cells, PrP(106-126)-activated caspase 9 and 3, induced poly (ADP-ribose) polymerase cleavage and increased the number of apoptotic cells. Dantrolene was shown to protect NT2 rho+ from PrP(106-126)-induced cell death, demonstrating the involvement of Ca2+ release through ER ryanodine receptors. However, in PrP(106-126)-treated NT2 rho0 cells, apoptosis was not able to proceed. These results demonstrate that functional mitochondria are required for cell death as a result of ER stress triggered by the PrP peptide, and further elucidate the molecular mechanisms involved in the neuronal loss that occurs in prion disorders.


Asunto(s)
Apoptosis/fisiología , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/fisiología , Fragmentos de Péptidos/toxicidad , Priones/toxicidad , Estrés Fisiológico/inducido químicamente , Análisis de Varianza , Calcio/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Colágeno Tipo XI/metabolismo , ADN Mitocondrial/genética , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Etiquetado Corte-Fin in Situ/métodos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Teratocarcinoma/patología , Factores de Tiempo , Proteína X Asociada a bcl-2/metabolismo
20.
Neurobiol Dis ; 30(3): 331-342, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18420416

RESUMEN

In this study, we analyzed whether ER Ca2+ release, induced by amyloid-beta (Abeta) and prion (PrP) peptides activates the mitochondrial-mediated apoptotic pathway. In cortical neurons, addition of the synthetic Abeta1-40 or PrP106-126 peptides depletes ER Ca2+ content, leading to cytosolic Ca2+ overload. The Ca2+ released through ryanodine (RyR) and inositol 1,4,5-trisphosphate (IP3R) receptors was shown to be involved in the loss of mitochondrial membrane potential, Bax translocation to mitochondria and apoptotic death. Our data further demonstrate that Ca2+ released from the ER leads to the depletion of endogenous GSH levels and accumulation of reactive oxygen species, which were also involved in the depolarization of the mitochondrial membrane. These results illustrate that the early Abeta- and PrP -induced perturbation of ER Ca2+ homeostasis affects mitochondrial function, activating the mitochondrial-mediated apoptotic pathway and help to clarify the mechanism implicated in neuronal death that occurs in AD and PrD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Apoptosis/fisiología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo , Fragmentos de Péptidos/farmacología , Priones/farmacología , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Membranas Intracelulares/fisiología , Potenciales de la Membrana/fisiología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/fisiología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA