Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Theory Comput ; 14(2): 973-980, 2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29272111

RESUMEN

We present an ab initio numerical tool to simulate surface resonant X-ray diffraction experiments. The crystal truncation rods and the spectra around a given X-ray absorption edge are calculated at any position of the reciprocal space. Density functional theory is used to determine the resonant scattering factor of an atom within its local environment and to calculate the diffraction peak intensities for surfaces covered with a thin film or with one or several adsorbed layers. Besides the sample geometry, the collected data also depend on several parameters, such as beam polarization and incidence and exit angles. In order to account for these factors, a numerical diffractometer mimicking the experimental operation modes has been created. Finally two case studies are presented in order to compare our simulations with experimental spectra: (i) a magnetite thin film deposited on a silver substrate and (ii) an electrochemical interface consisting of bromine atoms adsorbed on copper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA