Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Sci (Lond) ; 132(1): 145-156, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29222092

RESUMEN

Aldosterone is released from adrenal zona glomerulosa (ZG) cells and plays an important role in Na and K homoeostasis. Mutations in the human inwardly rectifying K channel CNJ type (KCNJ) 5 (KCNJ5) gene encoding the G-coupled inwardly rectifying K channel 4 (GIRK4) cause abnormal aldosterone secretion and hypertension. To better understand the role of wild-type (WT) GIRK4 in regulating aldosterone release, we have looked at aldosterone secretion in a Kcnj5 knockout (KO) mouse. We found that female but not male KO mice have reduced aldosterone levels compared with WT female controls, but higher levels of aldosterone after angiotensin II (Ang-II) stimulation. These differences could not be explained by sex differences in aldosterone synthase (Cyp11B2) gene expression in the mouse adrenal. Using RNAseq analysis to compare WT and KO adrenals, we showed that females also have a much larger set of differentially expressed adrenal genes than males (395 compared with 7). Ingenuity Pathway Analysis (IPA) of this gene set suggested that peroxisome proliferator activated receptor (PPAR) nuclear receptors regulated aldosterone production and altered signalling in the female KO mouse, which could explain the reduced aldosterone secretion. We tested this hypothesis in H295R adrenal cells and showed that the selective PPARα agonist fenofibrate can stimulate aldosterone production and induce Cyp11b2. Dosing mice in vivo produced similar results. Together our data show that Kcnj5 is important for baseline aldosterone secretion, but its importance is sex-limited at least in the mouse. It also highlights a novel regulatory pathway for aldosterone secretion through PPARα that may have translational potential in human hyperaldosteronism.


Asunto(s)
Aldosterona/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Perfilación de la Expresión Génica , Zona Glomerular/metabolismo , Aldosterona/sangre , Angiotensina II/farmacología , Animales , Línea Celular Tumoral , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales , Vasoconstrictores/farmacología , Zona Glomerular/efectos de los fármacos
2.
Circ Res ; 103(7): 717-25, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18723444

RESUMEN

Although the hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) are widely used in atherosclerosis to reduce serum cholesterol, statins have multiple other effects, including direct effects on cells of the vessel wall. Recently, DNA damage, including telomere shortening, has been identified in vascular smooth muscle cells (VSMCs) in human atherosclerosis. Although statins reduce DNA damage in vitro, the mechanisms by which they might protect DNA integrity in VSMCs are unknown. We show that human atherosclerotic plaque VSMCs exhibit increased levels of double-stranded DNA breaks and basal activation of DNA repair pathways involving ataxia telangiectasia-mutated (ATM) and the histone H2AX in vivo and in vitro. Oxidant stress induced DNA damage and activated DNA repair pathways in VSMCs. Statin treatment did not reduce oxidant stress or DNA damage but markedly accelerated DNA repair. Accelerated DNA repair required both the Nijmegen breakage syndrome (NBS)-1 protein and the human double minute protein Hdm2, accompanied by phosphorylation of Hdm2, dissociation of NBS-1 and Hdm2, inhibition of NBS-1 degradation, and accelerated phosphorylation of ATM. Statin treatment reduced VSMC senescence and telomere attrition in culture, accelerated DNA repair and reduced apoptosis in vivo after irradiation, and reduced ATM/ATR (ATM and Rad3-related) activity in atherosclerosis. We conclude that statins activate a novel mechanism of accelerating DNA repair, dependent on NBS-1 stabilization and Hdm2. Statin treatment may delay cell senescence and promote DNA repair in atherosclerosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Aterosclerosis/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Colesterol/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endotelio Vascular/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Conejos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
JACC Basic Transl Sci ; 4(2): 222-233, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31061924

RESUMEN

Stunning and cumulative ischemic dysfunction occur in the left ventricle with coronary balloon occlusion. Glucagon-like peptide (GLP)-1 protects the left ventricle against this dysfunction. This study used a conductance catheter method to evaluate whether the right ventricle (RV) developed similar dysfunction during right coronary artery balloon occlusion and whether GLP-1 was protective. In this study, the RV underwent significant stunning and cumulative ischemic dysfunction with right coronary artery balloon occlusion. However, GLP-1 did not protect the RV against this dysfunction when infused after balloon occlusion.

4.
Circ Res ; 99(2): 156-64, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16794190

RESUMEN

Although human atherosclerosis is associated with aging, direct evidence of cellular senescence and the mechanism of senescence in vascular smooth muscle cells (VSMCs) in atherosclerotic plaques is lacking. We examined normal vessels and plaques by histochemistry, Southern blotting, and fluorescence in situ hybridization for telomere signals. VSMCs in fibrous caps expressed markers of senescence (senescence-associated beta-galactosidase [SAbetaG] and the cyclin-dependent kinase inhibitors [cdkis] p16 and p21) not seen in normal vessels. In matched samples from the same individual, plaques demonstrated markedly shorter telomeres than normal vessels. Fibrous cap VSMCs exhibited markedly shorter telomeres compared with normal medial VSMCs. Telomere shortening was closely associated with increasing severity of atherosclerosis. In vitro, plaque VSMCs demonstrated morphological features of senescence, increased SAbetaG expression, reduced proliferation, and premature senescence. VSMC senescence was mediated by changes in cyclins D/E, p16, p21, and pRB, and plaque VSMCs could reenter the cell cycle by hyperphosphorylating pRB. Both plaque and normal VSMCs expressed low levels of telomerase. However, telomerase expression alone rescued plaque VSMC senescence despite short telomeres, normalizing the cdki/pRB changes. In vivo, plaque VSMCs exhibited oxidative DNA damage, suggesting that telomere damage may be induced by oxidant stress. Furthermore, oxidants induced premature senescence in vitro, with accelerated telomere shortening and reduced telomerase activity. We conclude that human atherosclerosis is characterized by senescence of VSMCs, accelerated by oxidative stress-induced DNA damage, inhibition of telomerase and marked telomere shortening. Prevention of cellular senescence may be a novel therapeutic target in atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Senescencia Celular , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Telómero/fisiología , Biomarcadores/análisis , Daño del ADN , Humanos , Oxidantes/farmacología , Estrés Oxidativo , Telomerasa/análisis , Telómero/ultraestructura
5.
Cardiovasc Res ; 60(3): 673-83, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14659813

RESUMEN

OBJECTIVE: Cell cycle inhibitors are promising agents to prevent or treat human coronary in-stent stenosis (ISS). However, their lack of specificity for ISS vascular smooth muscle cells (VSMCs) may inhibit medial VSMC proliferation and suppress vessel healing. METHODS: To identify inhibitor targets that differentially regulate proliferation of ISS vs. medial VSMCs, we examined cell cycle regulation in human VSMCs derived from (A) normal media, (B) ISS sites and (C) primary atherosclerotic plaques (P-VSMCs) using time-lapse videomicroscopy, flow cytometry, immunoblotting and immunohistochemistry. RESULTS: ISS-VSMC proliferation was intermediate between P-VSMCs and medial VSMCs. Compared with medial cells, P-VSMCs expressed increased p16 and p21, reduced p27, reduced cyclins D(1) and E, and reduced pRb phosphorylation. In contrast, ISS-VSMCs expressed high levels of cyclins E and A with pRb hyperphosphorylation, both in vitro and in vivo, associated with increased and chronic cell proliferation in vivo. Roscovitine, a selective CDK2 inhibitor, inhibited VSMC proliferation by both pRb-dependent and independent pathways and more potently in ISS-VSMCs than medial VSMCs. CONCLUSIONS: Human ISS-VSMCs have marked differences in the stable expression of multiple cell cycle regulators, suggesting that ISS-VSMCs derive from P-VSMCs driven to proliferate through cyclin E overexpression. The critical role for cyclin E-CDK2 enables the identification of the first agent that selectively inhibits ISS-VSMC proliferation.


Asunto(s)
Estenosis Coronaria/metabolismo , Ciclina E/metabolismo , Proteínas Musculares , Músculo Liso Vascular/metabolismo , Stents , Biomarcadores/análisis , División Celular/efectos de los fármacos , Células Cultivadas , Estenosis Coronaria/patología , Ciclina A/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Humanos , Proteínas de Microfilamentos/metabolismo , Músculo Liso Vascular/patología , Purinas/farmacología , Roscovitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA