Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Am J Pathol ; 182(2): 319-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23219729

RESUMEN

For the greater part of the last century, basic science research has been limited to in vitro studies of cellular processes and ex vivo tissue examination from suitable animal models of disease. In the last three decades, however, new techniques have been developed that permit the imaging of live animals using X-rays, radiotracer emissions, magnetic resonance signals, sound waves and optical fluorescence, and bioluminescence. The objective of this review is to provide a broad overview of common animal imaging modalities, with a focus on positron emission tomography (PET), single photon emission computed tomography (SPECT), and computed tomography (CT). Important examples, benefits, and limits of microPET/SPECT/CT technologies in current use, and their central role in improving our understanding of biological behavior and in facilitating the development of treatments from bench to bedside are included.


Asunto(s)
Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Humanos
2.
Proc Natl Acad Sci U S A ; 108(1): 319-24, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173237

RESUMEN

Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16(Ink4a) and p21(CIP). RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1(+/-) mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1(+/-) mice. In a PET-guided longitudinal study, we found that treating Ini1(+/-) mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1(+/-) mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Tumor Rabdoide/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cartilla de ADN/genética , Flavonoides/uso terapéutico , Silenciador del Gen , Técnicas Histológicas , Immunoblotting , Inmunohistoquímica , Hibridación Fluorescente in Situ , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Piperidinas/uso terapéutico , Reacción en Cadena de la Polimerasa , Tomografía de Emisión de Positrones , Tumor Rabdoide/genética , Tumor Rabdoide/ultraestructura , Proteína SMARCB1
3.
J Mammary Gland Biol Neoplasia ; 18(3-4): 257-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24221746

RESUMEN

Obesity is associated with an increased risk of breast cancer, and increased risk of recurrence in women who develop breast cancer. Evidence suggests that the risk of estrogen-receptor (ER)-positive breast cancer is increased in obese postmenopausal women, whereas in premenopausal women the risk of triple negative breast cancer is increased. Nonetheless, the presence of obesity at diagnosis, and possibly weight gain after diagnosis, may independently contribute to an individual's risk of recurrence of both pre- and postmenopausal breast cancer. Factors associated with adiposity that are likely contributing factors include hyperinsulinemia, inflammation, and relative hyperestrogenemia. Some studies suggest that some aromatase inhibitors may be less effective in obese women than lean women. Clinical trials have evaluated pharmacologic (eg, metformin) and dietary/lifestyle interventions to reduce breast cancer recurrence, although these interventions have not been tested in obese women who may be most likely to benefit from them. Further research is required in order to identify adiposity-associated factors driving recurrence, and design clinical trials to specifically test interventions in obese women at highest risk of recurrence.


Asunto(s)
Neoplasias de la Mama/etiología , Obesidad/complicaciones , Neoplasias de la Mama/fisiopatología , Ensayos Clínicos como Asunto , Femenino , Humanos , Obesidad/fisiopatología , Posmenopausia , Pronóstico , Factores de Riesgo
4.
Glycobiology ; 23(12): 1477-90, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24037315

RESUMEN

Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3(-/-)/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3(-/-)/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Galectinas/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Polisacáridos/metabolismo , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Neoplasias de la Mama/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Mamarias Experimentales/genética , Virus del Tumor Mamario del Ratón/metabolismo , Ratones , Ratones Endogámicos , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
5.
FASEB J ; 26(8): 3252-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22549510

RESUMEN

The KCNQ1 α subunit and the KCNE2 ß subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (-)-[3R,4S]-chromanol 293B (C293B) significantly impaired thyroid cell I(-) uptake, which is mediated by the Na(+)/I(-) symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028 ± 0.004 min(-1); 10 mg/kg C293B, 0.009 ± 0.006 min(-1)) and in vitro (EC(50): 99 ± 10 µM C293B). Na(+)-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I(-) in the thyroid (distinguished using ClO(4)(-), a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I(-) organification. However, Kcne2 deletion doubled the rate of free I(-) efflux from the thyroid following ClO(4)(-) injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I(-) uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.


Asunto(s)
Yoduros/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Glándula Tiroides/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Hipotiroidismo/genética , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Ratones , Tomografía de Emisión de Positrones , Canales de Potasio con Entrada de Voltaje/genética , Simportadores/antagonistas & inhibidores , Simportadores/metabolismo , Glándula Tiroides/efectos de los fármacos
6.
Biomedicines ; 11(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37760956

RESUMEN

The ketone bodies, sodium and lithium salts of acetoacetate (AcAc) and sodium 3-hydroxybutyrate (3-HB; commonly called beta-hydroxybutyrate) have been found to inhibit the proliferation of cancer cells. Previous studies have suggested that lithium itself may be an inhibiting agent but may be additive or synergistic with the effect of AcAc. We previously found that sodium acetoacetate (NaAcAc) inhibits the growth of human colon cancer cell line SW480. We report here similar results for several other cancer cell lines including ovarian, cervical and breast cancers. We found that NaAcAc does not kill cancer cells but rather blocks their proliferation. Similar inhibition of growth was seen in the effect of lithium ion alone (as LiCl). The effect of LiAcAc appears to be due to the combined effects of acetoacetate and the lithium ion. The ketone bodies, when given together with chemotherapeutic agents, rapamycin, methotrexate and the new peptide anti-cancer agent, PNC-27, substantially lowers their IC50 values for cancer cell, killing suggesting that ketone bodies and ketogenic diets may be powerful adjunct agents in treating human cancers.

7.
Clin Cancer Res ; 15(10): 3265-76, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19447867

RESUMEN

PURPOSE: Adipocytes represent one of the most abundant constituents of the mammary gland. They are essential for mammary tumor growth and survival. Metabolically, one of the more important fat-derived factors ("adipokines") is adiponectin (APN). Serum concentrations of APN negatively correlate with body mass index and insulin resistance. To explore the association of APN with breast cancer and tumor angiogenesis, we took an in vivo approach aiming to study its role in the mouse mammary tumor virus (MMTV)-polyoma middle T antigen (PyMT) mammary tumor model. EXPERIMENTAL DESIGN: We compared the rates of tumor growth in MMTV-PyMT mice in wild-type and APN-null backgrounds. RESULTS: Histology and micro-positron emission tomography imaging show that the rate of tumor growth is significantly reduced in the absence of APN at early stages. PyMT/APN knockout mice exhibit a reduction in their angiogenic profile resulting in nutrient deprivation of the tumors and tumor-associated cell death. Surprisingly, in more advanced malignant stages of the disease, tumor growth develops more aggressively in mice lacking APN, giving rise to a larger tumor burden, an increase in the mobilization of circulating endothelial progenitor cells, and a gene expression fingerprint indicative of more aggressive tumor cells. CONCLUSIONS: These observations highlight a novel important contribution of APN in mammary tumor development and angiogenesis, indicating that APN has potent angio-mimetic properties in tumor vascularization. However, in tumors deprived of APN, this antiangiogenic stress results in an adaptive response that fuels tumor growth through mobilization of circulating endothelial progenitor cells and the development of mechanisms enabling massive cell proliferation despite a chronically hypoxic microenvironment.


Asunto(s)
Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/genética , Neovascularización Patológica/genética , Adiponectina/sangre , Adiponectina/genética , Adiponectina/metabolismo , Animales , Antígenos Virales de Tumores/genética , Apoptosis , Western Blotting , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacocinética , Masculino , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , PPAR gamma/agonistas , PPAR gamma/metabolismo , Poliomavirus/genética , Tomografía de Emisión de Positrones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiazolidinedionas/farmacología , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética
8.
RSC Med Chem ; 11(2): 297-306, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479637

RESUMEN

The ketone bodies d-beta-hydroxybutyric acid and acetoacetic acid represent the principal oxidative energy sources of most tissues when dietary glucose is scarce. An 18F-labeled ketone body could be a useful tool for studying ketone body metabolism using positron emission tomography (PET). Here, we report the first radiofluorinated ketone body derivative (3S)-4-[18F]fluoro-3-hydroxybutyric acid ([18F]FBHB) as well as its enantiomer and l-beta-hydroxybutyric acid derivative, (3R)-4-[18F]fluoro-3-hydroxybutyric acid ((R)-[18F]F3HB). PET imaging in mice showed biodistribution profiles of the radiotracers that were consistent with the biodistribution of the respective endogenous compounds. Moreover, both enantiomers visualized breast cancer xenografts in vivo. Fasting over 24 h showed significantly enhanced brain and heart uptake of [18F]FBHB and tumor uptake of (R)-[18F]F3HB. Disorders exhibiting altered energy substrate utilization, such as Alzheimer's disease, epilepsy, diabetes, and cancer may be of interest for PET imaging studies using [18F]FBHB.

9.
PLoS One ; 15(12): e0233662, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33270630

RESUMEN

BACKGROUND: The effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied. METHODS: Two diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in 34 mice. Subgroups of 3-9 mice were assigned, in which the diet were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug. RESULTS: Blood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD. CONCLUSIONS: The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.


Asunto(s)
Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/tratamiento farmacológico , Dieta Cetogénica/métodos , Sirolimus/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Animales , Antineoplásicos/farmacología , Glucemia/efectos de los fármacos , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Modelos Animales de Enfermedad , Femenino , Insulina/sangre , Cetosis/fisiopatología , Ratones
10.
Cancer Cell Int ; 9: 14, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19480693

RESUMEN

BACKGROUND: Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA) enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. METHODS: Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM), or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. RESULTS: There was a high correlation of cell growth with ATP concentration (r = 0.948) in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p < 0.05). CONCLUSION: Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

11.
Semin Nucl Med ; 38(1): 82-102, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18096466

RESUMEN

This report is the conclusion of the international consensus committee on renal transit time (subcommittee of the International Scientific Committee of Radionuclides in Nephrourology) and provides recommendations on measurement, normal values, and analysis of clinical utility. Transit time is the time that a tracer remains within the kidney or within a part of the kidney (eg, parenchymal transit time). It can be obtained from a dynamic renogram and a vascular input acquired in standardized conditions by a deconvolution process. Alternatively to transit time measurement, simpler indices were proposed, such as time of maximum, normalized residual activity or renal output efficiency. Transit time has been mainly used in urinary obstruction, renal artery stenosis, or renovascular hypertension and renal transplant. Despite a large amount of published data on obstruction, only the value of normal transit is established. The value of delayed transit remains controversial, probably due to lack of a gold standard for obstruction. Transit time measurements are useful to diagnose renovascular hypertension, as are some of the simpler indices. The committee recommends further collaborative trials.


Asunto(s)
Diagnóstico por Computador/normas , Enfermedades Renales/diagnóstico , Nefrología/normas , Guías de Práctica Clínica como Asunto , Pautas de la Práctica en Medicina/normas , Renografía por Radioisótopo/normas , Urología/normas , Humanos , Internacionalidad
12.
Nutr J ; 7: 24, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18759982

RESUMEN

OBJECTIVE: To provide a simple method for presentation of data in comparative dietary trials. METHODS: Individual data from each diet are ranked and all possible paired comparisons are made and displayed in a pay-off matrix which can be color-coded according to the magnitude of the differences between the two diets. Probability of outcome can be calculated from the fraction of matrix elements corresponding to specified conditions. The method has the advantage of emphasizing differences and providing the maximum amount of information. RESULTS: The method was tested with values from the literature and allows intuitive sense of the comparative effectiveness of the two diets. In a test case in which a cross-over study had been performed the matrix derived from theoretical paired comparisons (treating the data as two parallel studies) was consistent with the results from the actual pairing in the cross-over. CONCLUSION: The matrix method is a simple way of providing access to the differences between dietary trials. It exaggerates differences but can be used in combination with group statistics that, conversely, provide reliability at the expense of detailed information.


Asunto(s)
Interpretación Estadística de Datos , Dieta/clasificación , Matemática , Obesidad/dietoterapia , Humanos , Resultado del Tratamiento , Pérdida de Peso
13.
J Acad Nutr Diet ; 118(4): 668-688, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28366810

RESUMEN

The predominant use of glucose anaerobically by cancer cells (Warburg effect) may be the most important characteristic the majority of these cells have in common and, therefore, a potential metabolic pathway to be targeted during cancer treatment. Because this effect relates to fuel oxidation, dietary manipulation has been hypothesized as an important strategy during cancer treatment. As such, the concept of a ketogenic diet (KD) in cancer emerged as a metabolic therapy (ie, targeting cancer cell metabolism) rather than a dietary approach. The therapeutic mechanisms of action of this high-fat, moderate-to-low protein, and very-low-carbohydrate diet may potentially influence cancer treatment and prognosis. Considering the lack of a dietetics-focused narrative review on this topic, we compiled the evidence related to the use of this diet in humans with diverse cancer types and stages, also focusing on the nutrition and health perspective. The use of KD in cancer shows potentially promising, but inconsistent, results. The limited number of studies and differences in study design and characteristics contribute to overall poor quality evidence, limiting the ability to draw evidence-based conclusions. However, the potential positive influences a KD may have on cancer treatment justify the need for well-designed clinical trials to better elucidate the mechanisms by which this dietary approach affects nutritional status, cancer prognosis, and overall health. The role of registered dietitian nutritionists is demonstrated to be crucial in planning and implementing KD protocols in oncology research settings, while also ensuring patients' adherence and optimal nutritional status.


Asunto(s)
Dieta Cetogénica/métodos , Dietética/métodos , Neoplasias/dietoterapia , Protocolos Clínicos , Dieta Cetogénica/normas , Dietética/normas , Humanos , Neoplasias/metabolismo , Estado Nutricional , Rol Profesional
14.
Theor Biol Med Model ; 4: 27, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17663761

RESUMEN

Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.


Asunto(s)
Dieta Reductora , Metabolismo Energético/fisiología , Termodinámica , Pérdida de Peso/fisiología , Animales , Dieta Reductora/métodos , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Humanos
15.
Urol Oncol ; 35(10): 581-585, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031628

RESUMEN

Computed tomography (CT) scanning is considered as the imaging study of choice for asymptomatic microhematuria according to the American Urological Association guidelines. For those patients with persistence of microhematuria after a negative initial examination, the guidelines suggest repeating the evaluation including CT scanning within 3 to 5 years. However, the cost and risk involved for utilizing this technology going forward is an issue, especially when the yield of finding significant pathology on subsequent imaging studies is exceedingly low. To minimize those concerns, I have proposed incorporating the utilization of ultrasound rather than the guideline-recommended CT for reasons and considerations to be discussed. In addition, I propose extending the use of ultrasound beyond evaluation of asymptomatic microhematuria to the routine urologic physical examination as it is superior to the current standard of palpation and percussion. The original concept of applying sound to a physical examination led to the technique of percussion. Technological advancement has taken the same sound, converted it to a digital image, and allowed us to see what we hear to achieve a greater diagnostic accuracy. The literature on this subject is reviewed and demonstrates support for just such a change in the delivery of urologic healthcare. I conclude by proposing that the quality of urologic care can be enhanced during a routine urologic physical examination through upgrading the technique of palpation and percussion by routinely utilizing ultrasound, creating the Complete Urologist.


Asunto(s)
Ultrasonografía/métodos , Urólogos/normas , Femenino , Humanos , Masculino
16.
Urol Oncol ; 35(10): 586-592, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031629

RESUMEN

Outcome studies help establish the benefits of tests or procedures that can change the delivery of medical care. Through this discourse, the current status of outcomes with respect to the use of ultrasound imaging for AMH as well as its general use during a routine urologic physical examination are explored. The changes in today's health care environment focus on cost reduction and outcomes that produce value in the context of patient satisfaction. The question is whether we have to wait for outcome results (that can take a lengthy period of time to achieve) before the benefits produced by ultrasound can be applied. This report reviews the literature and the role ultrasound can play in today's urologic health care environment. Supportive evidence demonstrates the value that ultrasound use brings to the urologic examining table for AMH and to daily urologic practice to the benefit of both patient and physician.


Asunto(s)
Ultrasonografía/métodos , Urólogos/normas , Femenino , Humanos , Masculino
18.
Expert Rev Endocrinol Metab ; 10(1): 15-24, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30289045

RESUMEN

We propose that dietary carbohydrate restriction, particularly ketogenic diets, may provide benefit as a therapeutic or preventive strategy in cancer, alone or as an adjunct to pharmacology. The argument derives from several points of evidence: There is a close association between cancer and both diabetes and obesity. Extensive evidence shows that low carbohydrate diets are the most effective dietary treatment of Type 2 diabetes and dietary adjunct in Type 1. Such diets also target all the markers of metabolic syndrome. Finally, de facto reduction in carbohydrate likely contributes to total dietary restriction, which is effective in the prevention and treatment of cancer. The idea is consistent with recent interest in treating cancer with drugs that target diabetes. To move forward, we must understand obesity and diabetes as response to a hyperglycemic state rather than simply a cause of downstream effects.

19.
Nutrition ; 31(1): 1-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25287761

RESUMEN

The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications, in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns about the efficacy and safety are long term and conjectural rather than data driven. Dietary carbohydrate restriction reliably reduces high blood glucose, does not require weight loss (although is still best for weight loss), and leads to the reduction or elimination of medication. It has never shown side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least controversial results. The insistence on long-term randomized controlled trials as the only kind of data that will be accepted is without precedent in science. The seriousness of diabetes requires that we evaluate all of the evidence that is available. The 12 points are sufficiently compelling that we feel that the burden of proof rests with those who are opposed.


Asunto(s)
Diabetes Mellitus Tipo 2/dietoterapia , Dieta Baja en Carbohidratos , Carbohidratos de la Dieta/administración & dosificación , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Manejo de la Enfermedad , Medicina Basada en la Evidencia , Humanos , Hiperglucemia/dietoterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Pérdida de Peso
20.
Nutr J ; 3: 9, 2004 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-15282028

RESUMEN

The principle of "a calorie is a calorie," that weight change in hypocaloric diets is independent of macronutrient composition, is widely held in the popular and technical literature, and is frequently justified by appeal to the laws of thermodynamics. We review here some aspects of thermodynamics that bear on weight loss and the effect of macronutrient composition. The focus is the so-called metabolic advantage in low-carbohydrate diets--greater weight loss compared to isocaloric diets of different composition. Two laws of thermodynamics are relevant to the systems considered in nutrition and, whereas the first law is a conservation (of energy) law, the second is a dissipation law: something (negative entropy) is lost and therefore balance is not to be expected in diet interventions. Here, we propose that a misunderstanding of the second law accounts for the controversy about the role of macronutrient effect on weight loss and we review some aspects of elementary thermodynamics. We use data in the literature to show that thermogenesis is sufficient to predict metabolic advantage. Whereas homeostasis ensures balance under many conditions, as a general principle, "a calorie is a calorie" violates the second law of thermodynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA