Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(3): 1503-1509, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34935816

RESUMEN

Oxide-ion diffusion pathways in brownmillerite oxides Ca2AlMnO5 and Ca2AlMnO5.5 are systematically investigated using first-principles calculations. These structures reversibly transform into each other by oxidation and reduction. We examine oxide-ion migration in Ca2AlMnO5 and Ca2AlMnO5.5 using the nudged elastic band method. In the reduced structure (Ca2AlMnO5), oxide-ion migration through a vacancy channel is found to have the lowest migration energy barrier, at 0.58 eV. The migration energy barrier of the second-lowest energy path, perpendicular to the vacancy channel, is found to be 0.98 eV. In the oxidized structure (Ca2AlMnO5.5), oxide-ion migration within AlO6 layers has migration energy barriers of 0.55 eV and 0.56 eV in the [100] and [001] directions, respectively. Oxide-ion migration perpendicular to the AlO6 layer has a migration energy barrier of 1.33 eV, suggesting that oxide-ion diffusion in the [010] direction is difficult even at elevated temperature. These results indicate that diffusion in the reduced phase is predominantly one-dimensional whereas it is two-dimensional in the oxidized phase.

2.
Phys Chem Chem Phys ; 22(15): 7984-7994, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32236282

RESUMEN

Understanding the mechanism of the insulator-metal transition (IMT) in VO2 is a necessary step in optimising this material's properties for a range of functional applications. Here, Rietveld refinement of synchrotron X-ray powder diffraction patterns is performed on thermochromic V1-xWxO2 (0.0 ≤ x ≤ 0.02) nanorod aggregates over the temperature range 100 ≤ T ≤ 400 K to examine the effect of doping on the structure and properties of the insulating monoclinic (M1) phase and metallic rutile (R) phase. Precise measurement of the lattice constants of the M1 and R phases enabled the onset (Ton) and endset (Tend) temperatures of the IMT to be determined accurately for different dopant levels. First-principles calculations reveal that the observed decrease in both Ton and Tend with increasing W content is a result of Peierls type V-O-V dimers being replaced by linear W-O-V dimers with a narrowing of the band gap. The results are interpreted in terms of the bandwidth-controlled Mott-Hubbard IMT model, providing a more detailed understanding of the underlying physical mechanisms driving the IMT as well as a guide to optimising properties of VO2-based materials for specific applications.

3.
Phys Chem Chem Phys ; 20(38): 25052-25061, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30247492

RESUMEN

Electrical conductivity, state of charge and chemical stability of Li-ion battery materials all depend on the electronic states of their component atoms, and tools for measuring these reliably are needed for advanced materials analysis and design. Here we report a systematic investigation of electron energy-loss near-edge structures (ELNES) of Li-K and O-K edges for ten representative Li-ion battery electrodes and solid-state electrolytes obtained by performing transmission electron microscopy with a Wien-filter monochromator-equipped microscope. While the peaks of Li-K edges are positioned at about 62 eV for most of the materials examined, the peak positions of O-K edges vary within a range of about 530 to 540 eV, and the peaks can be categorised into three groups based on their characteristic edge shapes: (i) double peaks, (ii) single sharp peaks, and (iii) single broad peaks. The double peaks of group (i) are attributable to the d0 electronic configuration of their transition metal ions bonded to O atoms. The origin of the different peak shapes of groups (ii) and (iii) is more subtle but insights are gained using density functional theory methods to simulate O-K ELNES edges of group (ii) material LiCoO2 and group (iii) material LiFePO4. Comparison of their densities of states reveals that in LiCoO2 the Co-O hybrid orbitals are separated from Li-O hybrid orbitals, resulting in a sharp peak in the O-K edge, while Fe-O, Li-O and P-O hybrid orbitals in LiFePO4 partially overlap each other and produce a broad peak.

4.
Phys Chem Chem Phys ; 20(24): 16518-16527, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29868670

RESUMEN

The phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under hydrostatic pressure are investigated using density functional theory calculations. The calculated energies of polymorphs of each compound show that the stable phases at zero pressure, viz., C-type Yb2O3, X2-Yb2SiO5 and ß-Yb2Si2O7, exhibit a pressure-induced phase transition as compressive pressure increases, which is consistent with available experimental data. The theoretical Raman spectra at zero pressure are in good agreement with experimental results for the stable phases and can be used to identify each polymorph. Although the calculated pressure dependence of Raman peak positions of C-type Yb2O3 is overestimated compared to available experimental data, piezospectroscopic coefficients extracted from Raman peaks of X2-Yb2SiO5 and ß-Yb2Si2O7 suggest that Raman spectroscopy can be used to measure stresses and strains in Yb silicates. Normal mode analyses reveal that characteristic Raman peaks of Yb silicates at frequencies above 600 cm-1 are strongly associated with vibrations of Si-O bonds in SixOy tetrahedral units.

5.
Nano Lett ; 16(9): 5409-14, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27472440

RESUMEN

The ability to view directly the surface structures of battery materials with atomic resolution promises to dramatically improve our understanding of lithium (de)intercalation and related processes. Here we report the use of state-of-the-art scanning transmission electron microscopy techniques to probe the (010) surface of commercially important material LiFePO4 and compare the results with theoretical models. The surface structure is noticeably different depending on whether Li ions are present in the topmost surface layer or not. Li ions are also found to migrate back to surface regions from within the crystal relatively quickly after partial delithiation, demonstrating the facile nature of Li transport in the [010] direction. The results are consistent with phase transformation models involving metastable phase formation and relaxation, providing atomic-level insights into these fundamental processes.

6.
Chem Soc Rev ; 43(1): 185-204, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24202440

RESUMEN

Energy storage technologies are critical in addressing the global challenge of clean sustainable energy. Major advances in rechargeable batteries for portable electronics, electric vehicles and large-scale grid storage will depend on the discovery and exploitation of new high performance materials, which requires a greater fundamental understanding of their properties on the atomic and nanoscopic scales. This review describes some of the exciting progress being made in this area through use of computer simulation techniques, focusing primarily on positive electrode (cathode) materials for lithium-ion batteries, but also including a timely overview of the growing area of new cathode materials for sodium-ion batteries. In general, two main types of technique have been employed, namely electronic structure methods based on density functional theory, and atomistic potentials-based methods. A major theme of much computational work has been the significant synergy with experimental studies. The scope of contemporary work is highlighted by studies of a broad range of topical materials encompassing layered, spinel and polyanionic framework compounds such as LiCoO2, LiMn2O4 and LiFePO4 respectively. Fundamental features important to cathode performance are examined, including voltage trends, ion diffusion paths and dimensionalities, intrinsic defect chemistry, and surface properties of nanostructures.

7.
Phys Chem Chem Phys ; 16(39): 21788-94, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25200320

RESUMEN

The expansion of batteries into electric vehicle and grid storage applications has driven the development of new battery materials and chemistries, such as olivine phosphate cathodes and sodium-ion batteries. Here we present atomistic simulations of the surfaces of olivine-structured NaFePO4 as a sodium-ion battery cathode, and discuss differences in its morphology compared to the lithium analogue LiFePO4. The calculated equilibrium morphology is mostly isometric in appearance, with (010), (201) and (011) faces dominant. Exposure of the (010) surface is vital because it is normal to the one-dimensional ion-conduction pathway. Platelet and cube-like shapes observed by previous microscopy studies are reproduced by adjusting surface energies. The results indicate that a variety of (nano)particle morphologies can be achieved by tuning surface stabilities, which depend on synthesis methods and solvent conditions, and will be important in optimising electrochemical performance.

8.
ACS Appl Mater Interfaces ; 14(5): 6507-6517, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35084828

RESUMEN

Spinel LiMn2O4 is an attractive lithium-ion battery cathode material that undergoes a complex series of structural changes during electrochemical cycling that lead to rapid capacity fading, compromising its long-term performance. To gain insights into this behavior, in this report we analyze changes in epitaxial LiMn2O4 thin films during the first few charge-discharge cycles with atomic resolution and correlate them with changes in the electrochemical properties. Impedance spectroscopy and scanning transmission electron microscopy are used to show that defect-rich LiMn2O4 surfaces contribute greatly to the increased resistivity of the battery after only a single charge. Sequences of {111} stacking faults within the films were also observed upon charging, increasing in number with further cycling. The atomic structures of these stacking faults are reported for the first time, showing that Li deintercalation is accompanied by local oxygen loss and relaxation of Mn atoms onto previously unoccupied sites. The stacking faults have a more compressed structure than the spinel matrix and impede Li-ion migration, which explains the observed increase in thin-film resistivity as the number of cycles increases. These results are used to identify key factors contributing to conductivity degradation and capacity fading in LiMn2O4 cathodes, highlighting the need to develop techniques that minimize defect formation in spinel cathodes to improve cycle performance.

9.
Sci Adv ; 8(25): eabo3093, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731864

RESUMEN

Small-pore zeolites are gaining increasing attention owing to their superior catalytic performance. Despite being critical for the catalytic activity and lifetime, postsynthetic tuning of bulk Si/Al ratios of small-pore zeolites has not been achieved with well-preserved crystallinity because of the limited mass transfer of aluminum species through narrow micropores. Here, we demonstrate a postsynthetic approach to tune the composition of small-pore zeolites using a previously unexplored strategy named pore-opening migration process (POMP). Acid treatment assisted by stabilization of the zeolite framework by organic cations in pores is proven to be successful for the removal of Al species from zeolite via POMP. Furthermore, the dealuminated AFX zeolite is treated via defect healing, which yields superior hydrothermal stability against severe steam conditions. Our findings could facilitate industrial applications of small-pore zeolites via aluminum content control and defect healing and could elucidate the structural reconstruction and arrangement processes for inorganic microporous materials.

10.
Chem Soc Rev ; 39(11): 4370-87, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20848015

RESUMEN

This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).


Asunto(s)
Fuentes Generadoras de Energía , Óxidos/química , Protones , Electrólitos/química , Iones/química , Ensayo de Materiales , Modelos Moleculares , Estructura Molecular
11.
Nat Commun ; 11(1): 1854, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296064

RESUMEN

Quantifying the dependence of thermal conductivity on grain boundary (GB) structure is critical for controlling nanoscale thermal transport in many technologically important materials. A major obstacle to determining such a relationship is the lack of a robust and physically intuitive structure descriptor capable of distinguishing between disparate GB structures. We demonstrate that a microscopic structure metric, the local distortion factor, correlates well with atomically decomposed thermal conductivities obtained from perturbed molecular dynamics for a wide variety of MgO GBs. Based on this correlation, a model for accurately predicting thermal conductivity of GBs is constructed using machine learning techniques. The model reveals that small distortions to local atomic environments are sufficient to reduce overall thermal conductivity dramatically. The method developed should enable more precise design of next-generation thermal materials as it allows GB structures exhibiting the desired thermal transport behaviour to be identified with small computational overhead.

12.
Sci Rep ; 8(1): 11152, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042484

RESUMEN

Optimizing multiple materials properties which are simultaneously in competition with each other is one of the chief challenges in thermoelectric materials research. Introducing greater anharmonicity to vibrational modes is one strategy for suppressing phonon thermal transport in crystalline oxides without detrimentally affecting electronic conductivity, so that the overall thermoelectric efficiency can be improved. Based on perturbed molecular dynamics and associated numerical analyses, we show that CoO2 layers in layered cobaltite thermoelectrics NaxCoO2 and Ca3Co4O9 are responsible for most of the in-plane heat transport in these materials, and that the non-conducting intermediate layers in the two materials exhibit different kinds of anharmonicity. More importantly, thermal conduction is shown to be altered by modifying the structure of the intermediate layers. The simulation methods developed to quantify the effect of anharmonic atomic vibrations on thermal conductivity provide a new tool for the rational design of thermoelectric materials, and the insights gained should hasten the attainment of higher conversion efficiencies so that thermoelectrics can be put to widespread practical use.

13.
Nat Commun ; 9(1): 2863, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-30030430

RESUMEN

Charge/discharge of lithium-ion battery cathode material LiFePO4 is mediated by the structure and properties of the interface between delithiated and lithiated phases. Direct observations of the interface in a partially delithiated single crystal as a function of time using scanning transmission electron microscopy and electron energy-loss spectroscopy help clarify these complex phenomena. At the nano-scale, the interface comprises a thin multiphase layer whose composition varies monotonically between those of the two end-member phases. After partial delithiation, the interface does not remain static, but changes gradually in terms of orientation, morphology and position, as Li ions from the crystal bulk diffuse back into the delithiated regions. First-principles calculations of a monoclinic crystal of composition Li2/3FePO4 suggest that the interface exhibits higher electronic conductivity than either of the end-member phases. These observations highlight the importance of the interface in enabling LiFePO4 particles to retain structural integrity during high-rate charging and discharging.

14.
Microscopy (Oxf) ; 66(4): 254-260, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28431172

RESUMEN

The spatial distribution of Li ions in a lithium iron phosphate (Li1-xFePO4) single crystal after chemical delithiation is quantitatively investigated using Fe M2,3-edge and valence electron energy loss (EEL) spectroscopy techniques. Li contents between those of end-member compositions LiFePO4 and FePO4 are found to correspond to reproducible changes in Fe M2,3-edge and valence EEL spectra across an interface between LiFePO4 and FePO4 regions. Quantitative analysis of these changes is used to estimate the local valence states of Fe ions, from which the Li concentration in the intermediate phase can be deduced. The faster recording time for valence EEL spectra than Fe M2,3-edge spectra makes measurement of the former a more efficient and reproducible means of estimating Li distributions.

15.
Ultramicroscopy ; 173: 64-70, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27923137

RESUMEN

Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder.

16.
Ultramicroscopy ; 178: 20-26, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27528443

RESUMEN

In situ electron holography is used to observe changes of electric-potential distributions in an amorphous lithium phosphorus oxynitride (LiPON) solid-state electrolyte when different voltages are applied. 2D phase images are simulated by integrating the 3D potential distribution along the electron trajectory through a thin Cu/LiPON/Cu region. Good agreement between experimental and simulated phase distributions is obtained when the influence of the external electric field is taken into account using the 3D boundary-charge method. Based on the precise potential changes, the lithium-ion and lithium-vacancy distributions inside the LiPON layer and electric double layers (EDLs) are inferred. The gradients of the phase drops at the interfaces in relation to EDL widths are discussed.

17.
Ultramicroscopy ; 176: 86-92, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28341556

RESUMEN

Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder.

18.
J Phys Chem B ; 110(11): 5395-402, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539474

RESUMEN

Atomistic simulation techniques are used to examine the defect chemistry of perovskite-structured NdCoO(3), a material whose electrochemical properties make it attractive for use in heterogeneous oxidation catalysis, as well as in gas sensors and mixed ionic/electronic conductors. In practice, dopants are added to NdCoO(3) to obtain the desired properties, such as high electrical conductivity and rapid gas adsorption/desorption; thus, a wide range of dopants substituted on both Nd and Co sites are examined. Charge compensation for aliovalent dopants is predicted to occur via formation of oxide ion vacancies; these are understood to be key sites with respect to catalytic and sensor activity. Low activation energies calculated for oxide ion migration are consistent with high oxygen mobilities measured experimentally. Sr and Ca, which occupy Nd sites in the lattice, are found to be the most soluble of the alkaline earth metals, in agreement with experiment. These two dopant ions also have the weakest binding energies for dopant-vacancy cluster formation. Mechanisms of electronic defect formation, critical to the overall transport properties of the material, are also considered. The results suggest that disproportionation of the Co ion to form small polaron species is the most favorable intrinsic defect process. In doped compounds, formation of electronic holes via uptake of oxygen at vacant sites is found to be a low energy process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA