Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
PLoS Genet ; 18(12): e1010502, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508464

RESUMEN

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Asunto(s)
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Metiltransferasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo
2.
Extremophiles ; 27(2): 10, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071215

RESUMEN

An acid-active exo/endo-chitinase; comprising a GH18 catalytic domain and substrate insertion domain; originating from the thermophilic filamentous fungus Rasamsonia emersonii, was expressed in Pichia pastoris. In silico analysis including phylogenetic analysis, and recombinant production, purification, biochemical characterisation, and industrial application testing, was carried out. The expressed protein was identified by SDS-PAGE as a smear from 56.3 to 125.1 kDa, which sharpens into bands at 46.0 kDa, 48.4 kDa and a smear above 60 kDa when treated with PNGase F. The acid-active chitinase was primarily a chitobiosidase but displayed some endo-chitinase and acetyl-glucosamidase activity. The enzyme was optimally active at 50 °C, and markedly low pH of 2.8. As far as the authors are aware, this is the lowest pH optima reported for any fungal chitinase. The acid-active chitinase likely plays a role in chitin degradation for cell uptake in its native environment, perhaps in conjunction with a chitin deacetylase. Comparative studies with other R. emersonii chitinases indicate that they may play a synergistic role in this. The acid-active chitinase displayed some efficacy against non-treated substrates; fungal chitin and chitin from shrimp. Thus, it may be suited to industrial chitin hydrolysis reactions for extraction of glucosamine and chitobiose at low pH.


Asunto(s)
Quitina , Quitinasas , Filogenia , Quitina/química , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo , Especificidad por Sustrato
3.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142753

RESUMEN

The naturally occurring sulphur-containing histidine derivative, ergothioneine (EGT), exhibits potent antioxidant properties and has been proposed to confer human health benefits. Although it is only produced by select fungi and prokaryotes, likely to protect against environmental stress, the GRAS organism Saccharomyces cerevisiae does not produce EGT naturally. Herein, it is demonstrated that the recombinant expression of a single gene, Aspergillus fumigatus egtA, in S. cerevisiae results in EgtA protein presence which unexpectedly confers complete EGT biosynthetic capacity. Both High Performance Liquid Chromatography (HPLC) and LC−mass spectrometry (MS) analysis were deployed to detect and confirm EGT production in S. cerevisiae. The localisation and quantification of the resultant EGT revealed a significantly (p < 0.0001) larger quantity of EGT was extracellularly present in culture supernatants than intracellularly accumulated in 96 h yeast cultures. Methionine addition to cultures improved EGT production. The additional expression of two candidate cysteine desulfurases from A. fumigatus was thought to be required to complete EGT biosynthesis, namely AFUA_2G13295 and AFUA_3G14240, termed egt2a and egt2b in this study. However, the co-expression of egtA and egt2a in S. cerevisiae resulted in a significant decrease in the observed EGT levels (p < 0.05). The AlphaFold prediction of A. fumigatus EgtA 3-Dimensional structure illuminates the bidomain structure of the enzyme and the opposing locations of both active sites. Overall, we clearly show that recombinant S. cerevisiae can biosynthesise and secrete EGT in an EgtA-dependent manner which presents a facile means of producing EGT for biotechnological and biomedical use.


Asunto(s)
Ergotioneína , Antioxidantes/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Cisteína , Ácido Egtácico , Histidina/genética , Histidina/metabolismo , Humanos , Metionina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azufre
4.
Anal Biochem ; 632: 114384, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543643

RESUMEN

Invasive pulmonary aspergillosis (IPA) is a severe life-threatening condition. Diagnosis of fungal disease in general, and especially that caused by Aspergillus fumigatus is problematic. A. fumigatus secretes siderophores to acquire iron during infection, which are also essential for virulence. We describe the chemoacetylation of ferrated fusarinine C to diacetylated fusarinine C (DAFC), followed by protein conjugation, which facilitated triacetylfusarinine C (TAFC)-specific monoclonal antibody production with specific recognition of the ferrated form of TAFC. A single monoclonal antibody sequence was ultimately elucidated by a combinatorial strategy involving protein LC-MS/MS, cDNA sequencing and RNAseq. The resultant murine IgG2a monoclonal antibody was secreted in, and purified from, mammalian cell culture (5 mg) and demonstrated to be highly specific for TAFC detection by competitive ELISA (detection limit: 15 nM) and in a lateral flow test system (detection limit: 3 ng), using gold nanoparticle conjugated- DAFC-bovine serum albumin for competition. Overall, this work reveals for the first time a recombinant TAFC-specific monoclonal antibody with diagnostic potential for IPA diagnosis in traditional and emerging patient groups (e.g., COVID-19) and presents a useful strategy for murine Ig sequence determination, and expression in HEK293 cells, to overcome unexpected limitations associated with aberrant or deficient murine monoclonal antibody production.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Aspergilosis/diagnóstico , Compuestos Férricos/inmunología , Ácidos Hidroxámicos/inmunología , Inmunoconjugados/química , Sideróforos/química , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidad , Ensayo de Inmunoadsorción Enzimática , Compuestos Férricos/análisis , Células HEK293 , Humanos , Ácidos Hidroxámicos/análisis , Ratones , Proteínas Recombinantes/inmunología
5.
BMC Genomics ; 19(1): 976, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30593269

RESUMEN

BACKGROUND: Caleosin/peroxygenases, CLO/PXG, (designated PF05042 in Pfam) are a group of genes/proteins with anomalous distributions in eukaryotic taxa. We have previously characterised CLO/PXGs in the Viridiplantae. The aim of this study was to investigate the evolution and functions of the CLO/PXGs in the Fungi and other non-plant clades and to elucidate the overall origin of this gene family. RESULTS: CLO/PXG-like genes are distributed across the full range of fungal groups from the basal clades, Cryptomycota and Microsporidia, to the largest and most complex Dikarya species. However, the genes were only present in 243 out of 844 analysed fungal genomes. CLO/PXG-like genes have been retained in many pathogenic or parasitic fungi that have undergone considerable genomic and structural simplification, indicating that they have important functions in these species. Structural and functional analyses demonstrate that CLO/PXGs are multifunctional proteins closely related to similar proteins found in all major taxa of the Chlorophyte Division of the Viridiplantae. Transcriptome and physiological data show that fungal CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression and are upregulated in response to a range of biotic and abiotic stresses as well as participating in key metabolic and developmental processes such as lipid metabolism, signalling, reproduction and pathogenesis. Biochemical data also reveal that the Aspergillus flavus CLO/PXG has specific functions in sporulation and aflatoxin production as well as playing roles in lipid droplet function. CONCLUSIONS: In contrast to plants, CLO/PXGs only occur in about 30% of sequenced fungal genomes but are present in all major taxa. Fungal CLO/PXGs have similar but not identical roles to those in plants, including stress-related oxylipin signalling, lipid metabolism, reproduction and pathogenesis. While the presence of CLO/PXG orthologs in all plant genomes sequenced to date would suggest that they have core housekeeping functions in plants, the selective loss of CLO/PXGs in many fungal genomes suggests more restricted functions in fungi as accessory genes useful in particular environments or niches. We suggest an ancient origin of CLO/PXG-like genes in the 'last eukaryotic common ancestor' (LECA) and their subsequent loss in ancestors of the Metazoa, after the latter had diverged from the ancestral fungal lineage.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Hongos/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Evolución Molecular , Hongos/clasificación , Genoma Fúngico , Genoma de Planta , Genómica , Filogenia , Viridiplantae/genética
6.
Eukaryot Cell ; 14(9): 941-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150413

RESUMEN

Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.


Asunto(s)
Aspergillus fumigatus/metabolismo , Gliotoxina/biosíntesis , Metionina/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gliotoxina/toxicidad , Metilación , S-Adenosilhomocisteína/metabolismo
7.
Mol Biol Evol ; 31(3): 501-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24273322

RESUMEN

Defining homologous genes is important in many evolutionary studies but raises obvious issues. Some of these issues are conceptual and stem from our assumptions of how a gene evolves, others are practical, and depend on the algorithmic decisions implemented in existing software. Therefore, to make progress in the study of homology, both ontological and epistemological questions must be considered. In particular, defining homologous genes cannot be solely addressed under the classic assumptions of strong tree thinking, according to which genes evolve in a strictly tree-like fashion of vertical descent and divergence and the problems of homology detection are primarily methodological. Gene homology could also be considered under a different perspective where genes evolve as "public goods," subjected to various introgressive processes. In this latter case, defining homologous genes becomes a matter of designing models suited to the actual complexity of the data and how such complexity arises, rather than trying to fit genetic data to some a priori tree-like evolutionary model, a practice that inevitably results in the loss of much information. Here we show how important aspects of the problems raised by homology detection methods can be overcome when even more fundamental roots of these problems are addressed by analyzing public goods thinking evolutionary processes through which genes have frequently originated. This kind of thinking acknowledges distinct types of homologs, characterized by distinct patterns, in phylogenetic and nonphylogenetic unrooted or multirooted networks. In addition, we define "family resemblances" to include genes that are related through intermediate relatives, thereby placing notions of homology in the broader context of evolutionary relationships. We conclude by presenting some payoffs of adopting such a pluralistic account of homology and family relationship, which expands the scope of evolutionary analyses beyond the traditional, yet relatively narrow focus allowed by a strong tree-thinking view on gene evolution.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Homología de Secuencia de Ácido Nucleico , Bases de Datos Genéticas , Humanos , Familia de Multigenes , Filogenia
8.
Nature ; 459(7247): 657-62, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19465905

RESUMEN

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.


Asunto(s)
Candida/fisiología , Candida/patogenicidad , Evolución Molecular , Genoma Fúngico/genética , Reproducción/genética , Candida/clasificación , Candida/genética , Codón/genética , Secuencia Conservada , Diploidia , Genes Fúngicos/genética , Meiosis/genética , Polimorfismo Genético , Saccharomyces/clasificación , Saccharomyces/genética , Virulencia/genética
9.
BMC Genomics ; 15: 194, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24628813

RESUMEN

BACKGROUND: Cytosolic Hsp70 is a ubiquitous molecular chaperone that is involved in responding to a variety of cellular stresses. A major function of Hsp70 is to prevent the aggregation of denatured proteins by binding to exposed hydrophobic regions and preventing the accumulation of amorphous aggregates. To gain further insight into the functional redundancy and specialisation of the highly homologous yeast Hsp70-Ssa family we expressed each of the individual Ssa proteins as the sole source of Hsp70 in the cell and assessed phenotypic differences in prion propagation and stress resistance. Additionally we also analysed the global gene expression patterns in yeast strains expressing individual Ssa proteins, using microarray and RT-qPCR analysis. RESULTS: We confirm and extend previous studies demonstrating that cells expressing different Hsp70-Ssa isoforms vary in their ability to propagate the yeast [PSI+] prion, with Ssa3 being the most proficient. Of the four Ssa family members the heat inducible isoforms are more proficient in acquiring thermotolerance and we show a greater requirement than was previously thought, for cellular processes in addition to the traditional Hsp104 protein disaggregase machinery, in acquiring such thermotolerance. Cells expressing different Hsp70-Ssa isoforms also display differences in phenotypic response to exposure to cell wall damaging and oxidative stress agents, again with the heat inducible isoforms providing better protection than constitutive isoforms. We assessed global transcriptome profiles for cells expressing individual Hsp70-Ssa isoforms as the sole source of cytosolic Hsp70, and identified a significant difference in cellular gene expression between these strains. Differences in gene expression profiles provide a rationale for some phenotypic differences we observed in this study. We also demonstrate a high degree of correlation between microarray data and RT-qPCR analysis for a selection of genes. CONCLUSIONS: The Hsp70-Ssa family provide both redundant and variant-specific functions within the yeast cell. Yeast cells expressing individual members of the Hsp70-Ssa family as the sole source of Ssa protein display differences in global gene expression profiles. These changes in global gene expression may contribute significantly to the phenotypic differences observed between the Hsp70-Ssa family members.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Fenotipo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Adaptación Biológica/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Calor , Familia de Multigenes , Unión Proteica , Replegamiento Proteico , Estrés Fisiológico/genética
10.
BMC Genomics ; 15: 894, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25311525

RESUMEN

BACKGROUND: Aspergillus fumigatus produces a number of secondary metabolites, one of which, gliotoxin, has been shown to exhibit anti-fungal activity. Thus, A. fumigatus must be able to protect itself against gliotoxin. Indeed one of the genes in the gliotoxin biosynthetic gene cluster in A. fumigatus, gliT, is required for self-protection against the toxin- however the global self-protection mechanism deployed is unclear. RNA-seq was employed to identify genes differentially regulated upon exposure to gliotoxin in A. fumigatus wild-type and A. fumigatus ∆gliT, a strain that is hypersensitive to gliotoxin. RESULTS: Deletion of A. fumigatus gliT resulted in altered expression of 208 genes (log2 fold change of 1.5) when compared to A. fumigatus wild-type, of which 175 genes were up-regulated and 33 genes were down-regulated. Expression of 164 genes was differentially regulated (log2 fold change of 1.5) in A. fumigatus wild-type when exposed to gliotoxin, consisting of 101 genes with up-regulated expression and 63 genes with down-regulated expression. Interestingly, a much larger number of genes, 1700, were found to be differentially regulated (log2 fold change of 1.5) in A. fumigatus ∆gliT when challenged with gliotoxin. These consisted of 508 genes with up-regulated expression, and 1192 genes with down-regulated expression. Functional Catalogue (FunCat) classification of differentially regulated genes revealed an enrichment of genes involved in both primary metabolic functions and secondary metabolism. Specifically, genes involved in gliotoxin biosynthesis, helvolic acid biosynthesis, siderophore-iron transport genes and also nitrogen metabolism genes and ribosome biogenesis genes underwent altered expression. It was confirmed that gliotoxin biosynthesis is induced upon exposure to exogenous gliotoxin, production of unrelated secondary metabolites is attenuated in A. fumigatus ∆gliT, while quantitative proteomic analysis confirmed disrupted translation in A. fumigatus ∆gliT challenged with exogenous gliotoxin. CONCLUSIONS: This study presents the first global investigation of the transcriptional response to exogenous gliotoxin in A. fumigatus wild-type and the hyper-sensitive strain, ∆gliT. Our data highlight the global and extensive affects of exogenous gliotoxin on a sensitive strain devoid of a self-protection mechanism and infer that GliT functionality is required for the optimal biosynthesis of selected secondary metabolites in A. fumigatus.


Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Gliotoxina/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Ácido Fusídico/análogos & derivados , Ácido Fusídico/biosíntesis , Gliotoxina/biosíntesis , Gliotoxina/toxicidad , Familia de Multigenes , Nitrógeno/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Análisis de Secuencia de ARN , Sideróforos/biosíntesis , Transcriptoma
11.
New Phytol ; 202(2): 716-725, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24460533

RESUMEN

The gene network that specifies flower shape in Antirrhinum majus (bilateral floral symmetry or zygomorphy) includes two MYB-class genes - RADIALIS (RAD) and DIVARICATA (DIV). RAD is involved in establishing the dorsal identity program and its role is to regulate the domain of activity of DIV (the ventral identity program) by restricting it to ventral regions of the flower. Plantago is in the same family as Antirrhinum but has small, radially symmetrical (actinomorphic) flowers derived from a zygomorphic ancestral state. Here we investigate the MYB-class floral symmetry genes and the role they have played in the evolution of derived actinomorphy in Plantago lanceolata. A DIV ortholog (PlDIV) but no RAD ortholog was identified in P. lanceolata. PlDIV is expressed across all petals and stamens later in flower development, which is consistent with the loss of RAD gene function. PlDIV expression in anther sporogenous tissue also suggests that PlDIV was co-opted to regulate cell proliferation during the early stages of pollen development. These results indicate that evolution of derived actinomorphy in Plantago involved complete loss of dorsal gene function, resulting in expansion of the domain of expression of the ventral class of floral symmetry genes.


Asunto(s)
Evolución Molecular , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantago/genética , Factores de Transcripción/genética , Genes myb , Fenotipo , Proteínas de Plantas/genética , Plantago/crecimiento & desarrollo
12.
Nucleic Acids Res ; 40(16): 7806-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22669901

RESUMEN

An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O(6)-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O(6)-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system.


Asunto(s)
Alquilantes/toxicidad , Aspergillus fumigatus/genética , Reparación del ADN , Metiltransferasas/genética , O(6)-Metilguanina-ADN Metiltransferasa/genética , Adaptación Fisiológica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Daño del ADN , Eliminación de Gen , Metilnitronitrosoguanidina/toxicidad , Metiltransferasas/metabolismo , Metiltransferasas/fisiología , O(6)-Metilguanina-ADN Metiltransferasa/biosíntesis , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Filogenia
13.
J Proteome Res ; 12(6): 2552-70, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23656496

RESUMEN

Armillaria mellea is a major plant pathogen. Yet, no large-scale "-omics" data are available to enable new studies, and limited experimental models are available to investigate basidiomycete pathogenicity. Here we reveal that the A. mellea genome comprises 58.35 Mb, contains 14473 gene models, of average length 1575 bp (4.72 introns/gene). Tandem mass spectrometry identified 921 mycelial (n = 629 unique) and secreted (n = 183 unique) proteins. Almost 100 mycelial proteins were either species-specific or previously unidentified at the protein level. A number of proteins (n = 111) was detected in both mycelia and culture supernatant extracts. Signal sequence occurrence was 4-fold greater for secreted (50.2%) compared to mycelial (12%) proteins. Analyses revealed a rich reservoir of carbohydrate degrading enzymes, laccases, and lignin peroxidases in the A. mellea proteome, reminiscent of both basidiomycete and ascomycete glycodegradative arsenals. We discovered that A. mellea exhibits a specific killing effect against Candida albicans during coculture. Proteomic investigation of this interaction revealed the unique expression of defensive and potentially offensive A. mellea proteins (n = 30). Overall, our data reveal new insights into the origin of basidiomycete virulence and we present a new model system for further studies aimed at deciphering fungal pathogenic mechanisms.


Asunto(s)
Armillaria/patogenicidad , Proteínas Fúngicas/genética , Genoma Fúngico , Micelio/patogenicidad , Proteómica , Antibiosis , Armillaria/clasificación , Armillaria/genética , Armillaria/metabolismo , Candida albicans/crecimiento & desarrollo , Cromatografía Liquida , Proteínas Fúngicas/metabolismo , Tamaño del Genoma , Lacasa/aislamiento & purificación , Micelio/clasificación , Micelio/genética , Micelio/metabolismo , Peroxidasas/aislamiento & purificación , Filogenia , Plantas/microbiología , Especificidad de la Especie , Espectrometría de Masas en Tándem , Virulencia
14.
IMA Fungus ; 14(1): 3, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726175

RESUMEN

The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.

15.
Sci Rep ; 13(1): 16156, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758814

RESUMEN

Overcoming antimicrobial resistance represents a formidable challenge and investigating bacterial growth inhibition by fungal metabolites may yield new strategies. Although the fungal non-ribosomal peptide gliotoxin (GT) is known to exhibit antibacterial activity, the mechanism(s) of action are unknown, although reduced gliotoxin (dithiol gliotoxin; DTG) is a zinc chelator. Furthermore, it has been demonstrated that GT synergises with vancomycin to inhibit growth of Staphylococcus aureus. Here we demonstrate, without precedent, that GT-mediated growth inhibition of both Gram positive and negative bacterial species is reversed by Zn2+ or Cu2+ addition. Both GT, and the known zinc chelator TPEN, mediate growth inhibition of Enterococcus faecalis which is reversed by zinc addition. Moreover, zinc also reverses the synergistic growth inhibition of E. faecalis observed in the presence of both GT and vancomycin (4 µg/ml). As well as zinc chelation, DTG also appears to chelate Cu2+, but not Mn2+ using a 4-(2-pyridylazo)resorcinol assay system and Zn2+ as a positive control. DTG also specifically reacts in Fe3+-containing Siderotec™ assays, most likely by Fe3+ chelation from test reagents. GSH or DTT show no activity in these assays. Confirmatory high resolution mass spectrometry, in negative ion mode, confirmed, for the first time, the presence of both Cu[DTG] and Fe[DTG]2 chelates. Label free quantitative proteomic analysis further revealed major intracellular proteomic remodelling within E. faecalis in response to GT exposure for 30-180 min. Globally, 4.2-7.2% of detectable proteins exhibited evidence of either unique presence/increased abundance or unique absence/decreased abundance (n = 994-1160 total proteins detected), which is the first demonstration that GT affects the bacterial proteome in general, and E. faecalis, specifically. Unique detection of components of the AdcABC and AdcA-II zinc uptake systems was observed, along with apparent ribosomal reprofiling to zinc-free paralogs in the presence of GT. Overall, we hypothesise that GT-mediated bacterial growth inhibition appears to involve intracellular zinc depletion or reduced bioavailability, and based on in vitro chelate formation, may also involve dysregulation of Cu2+ homeostasis.


Asunto(s)
Gliotoxina , Gliotoxina/farmacología , Vancomicina , Proteómica , Zinc/farmacología , Zinc/metabolismo , Quelantes/farmacología
16.
Mol Microbiol ; 81(6): 1560-76, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21819456

RESUMEN

Cryptococcus neoformans is a human fungal pathogen that is the causative agent of cryptococcosis and fatal meningitis in immuno-compromised hosts. Recent studies suggest that copper (Cu) acquisition plays an important role in C. neoformans virulence, as mutants that lack Cuf1, which activates the Ctr4 high affinity Cu importer, are hypo-virulent in mouse models. To understand the constellation of Cu-responsive genes in C. neoformans and how their expression might contribute to virulence, we determined the transcript profile of C. neoformans in response to elevated Cu or Cu deficiency. We identified two metallothionein genes (CMT1 and CMT2), encoding cysteine-rich Cu binding and detoxifying proteins, whose expression is dramatically elevated in response to excess Cu. We identified a new C. neoformans Cu transporter, CnCtr1, that is induced by Cu deficiency and is distinct from CnCtr4 and which shows significant phylogenetic relationship to Ctr1 from other fungi. Surprisingly, in contrast to other fungi, we found that induction of both CnCTR1 and CnCTR4 expression under Cu limitation, and CMT1 and CMT2 in response to Cu excess, are dependent on the CnCuf1 Cu metalloregulatory transcription factor. These studies set the stage for the evaluation of the specific Cuf1 target genes required for virulence in C. neoformans.


Asunto(s)
Cobre/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Regulón , Animales , Cryptococcus neoformans/patogenicidad , Perfilación de la Expresión Génica , Genes Fúngicos , Ratones , Virulencia
17.
Microbiol Spectr ; 10(4): e0226821, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35946960

RESUMEN

The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.


Asunto(s)
Pythium , Zingiber officinale , Péptido Hidrolasas , Enfermedades de las Plantas , Plantas , Pythium/genética , Virulencia/genética , Factores de Virulencia/genética
18.
J Mol Evol ; 73(3-4): 116-33, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21938499

RESUMEN

We have used three independent phylogenomic approaches (concatenated alignments, single-, and multi-gene supertrees) to reconstruct the fungal tree of life (FTOL) using publicly available fungal genomes. This is the first time multi-gene families have been used in fungal supertree reconstruction and permits us to use up to 66% of the 1,001,217 genes in our fungal database. Our analyses show that different phylogenomic datasets derived from varying clustering criteria and alignment orientation do not have a major effect on phylogenomic supertree reconstruction. Overall the resultant phylogenomic trees are relatively congruent with one another and successfully recover the major fungal phyla, subphyla and classes. We find that where incongruences do occur, the inferences are usually poorly supported. Within the Ascomycota phylum, our phylogenies reconstruct monophyletic Saccharomycotina and Pezizomycotina subphyla clades and infer a sister group relationship between these to the exclusion of the Taphrinomycotina. Within the Pezizomycotina subphylum, all three phylogenies infer a sister group relationship between the Leotiomycetes and Sordariomycetes classes. However, there is conflict regarding the relationships with the Dothideomycetes and Eurotiomycetes classes. Within the Basidiomycota phylum, supertrees derived from single- and multi-gene families infer a sister group relationship between the Pucciniomycotina and Agaricomycotina subphyla while the concatenated phylogeny infers a poorly supported relationship between the Agaricomycotina and Ustilagomycotina. The reconstruction of a robust FTOL is important for future fungal comparative analyses. We illustrate this point by performing a preliminary investigation into the phyletic distribution of yeast prion-like proteins in the fungal kingdom.


Asunto(s)
Proteínas Fúngicas/genética , Hongos/clasificación , Filogenia , Priones/genética , Secuencia de Aminoácidos , Teorema de Bayes , Análisis por Conglomerados , Simulación por Computador , Hongos/genética , Cadenas de Markov , Modelos Genéticos , Alineación de Secuencia
19.
Fungal Biol ; 125(9): 704-717, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34420697

RESUMEN

Cultivation of Agaricus bisporus is a large horticultural industry for many countries worldwide, where a single variety is almost grown exclusively. Mushroom virus X (MVX), a complex of multiple positive-sense single stranded RNA (ss(+)RNA) viruses, is a major pathogen of typical A. bisporus crops. MVX can manifest a variety of symptoms in crops and is highly infective and difficult to eradicate once established in host mycelium. Currently our knowledge regarding the molecular response of A. bisporus fruit bodies to MVX infection is limited. In order to study the response of different A. bisporus strains with different susceptibilities to MVX, we designed a model system to evaluate the in-vitro transmission of viruses in A. bisporus hyphae over a time-course, at two crucial phases in the crop cycle. The symptom expression of MVX in these varieties and the transcriptomic and proteomic response of fruit bodies to MVX-infection were examined. Transmission studies revealed the high potential of MVX to spread to uninfected mycelium yet not into the fruit bodies of certain strains in a crop. MVX affected colour and quality of multiple fruit bodies. Gene expression is significantly altered in all strains and between times of inoculation in the crop. Genes related to stress responses displayed differential expression. Proteomic responses revealed restriction of cellular signalling and vesicle transport in infected fruit bodies. This in-depth analysis examining many factors relevant to MVX infection in different A. bisporus strains, will provide key insights into host responses for this commercially important food crop.


Asunto(s)
Agaricus , Proteoma , Transcriptoma , Fenómenos Fisiológicos de los Virus , Agaricus/clasificación , Agaricus/genética , Agaricus/virología , Regulación Fúngica de la Expresión Génica
20.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34849824

RESUMEN

The methylotrophic yeast Ogataea polymorpha has long been a useful system for recombinant protein production, as well as a model system for methanol metabolism, peroxisome biogenesis, thermotolerance, and nitrate assimilation. It has more recently become an important model for the evolution of mating-type switching. Here, we present a population genomics analysis of 47 isolates within the O. polymorpha species complex, including representatives of the species O. polymorpha, Ogataea parapolymorpha, Ogataea haglerorum, and Ogataea angusta. We found low levels of nucleotide sequence diversity within the O. polymorpha species complex and identified chromosomal rearrangements both within and between species. In addition, we found that one isolate is an interspecies hybrid between O. polymorpha and O. parapolymorpha and present evidence for loss of heterozygosity following hybridization.


Asunto(s)
Saccharomycetales , Genómica , Peroxisomas , Saccharomycetales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA