Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 92(5): 796-807, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28901681

RESUMEN

Geminiviruses are DNA viruses that cause severe crop losses in different parts of the world, and there is a need for genetic sources of resistance to help combat them. Arabidopsis has been used as a source for virus-resistant genes that derive from alterations in essential host factors. We used a virus-induced gene silencing (VIGS) vector derived from the geminivirus Cabbage leaf curl virus (CaLCuV) to assess natural variation in virus-host interactions in 190 Arabidopsis accessions. Silencing of CH-42, encoding a protein needed to make chlorophyll, was used as a visible marker to discriminate asymptomatic accessions from those showing resistance. There was a wide range in symptom severity and extent of silencing in different accessions, but two correlations could be made. Lines with severe symptoms uniformly lacked extensive VIGS, and lines that showed attenuated symptoms over time (recovery) showed a concomitant increase in the extent of VIGS. One accession, Pla-1, lacked both symptoms and silencing, and was immune to wild-type infectious clones corresponding to CaLCuV or Beet curly top virus (BCTV), which are classified in different genera in the Geminiviridae. It also showed resistance to the agronomically important Tomato yellow leaf curl virus (TYLCV). Quantitative trait locus mapping of a Pla-1 X Col-0 F2 population was used to detect a major peak on chromosome 1, which is designated gip-1 (geminivirus immunity Pla-1-1). The recessive nature of resistance to CaLCuV and the lack of obvious candidate genes near the gip-1 locus suggest that a novel resistance gene(s) confers immunity.


Asunto(s)
Arabidopsis/virología , Geminiviridae/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Silenciador del Gen , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética
2.
Plant Physiol ; 171(1): 42-61, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26983993

RESUMEN

Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Transcriptoma , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/aislamiento & purificación , Secuencia de Bases , Hidrato de Cloral , ADN sin Sentido , Flores/genética , Genoma de Planta , Hibridación in Situ , Ácidos Indolacéticos/farmacología , Proteínas de Dominio MADS/aislamiento & purificación , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Confocal , Óvulo Vegetal/citología , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Isoformas de Proteínas , Protoplastos , ARN de Planta/química , ARN de Planta/aislamiento & purificación , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Factores de Transcripción , Activación Transcripcional
3.
Plant Physiol ; 170(3): 1675-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26818732

RESUMEN

A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Modelos Genéticos , Mutación , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
4.
Plant Cell ; 26(1): 102-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24488963

RESUMEN

Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Regiones de Fijación a la Matriz , Nucleosomas/metabolismo , Poli dA-dT/metabolismo , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Front Plant Sci ; 11: 132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161609

RESUMEN

The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critical for proper endosperm and seed development. We use a transcriptional time series analysis to identify genes that are associated with key shifts in seed development, including genes associated with secondary cell wall synthesis, mitotic cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed maturation. We relate these genes to morphological changes in Mimulus seeds. We also identify four endosperm-expressed transcripts that display imprinted (paternal) expression bias. The imprinted status of these four genes is conserved in other flowering plants, suggesting that they are functionally important in endosperm development. Our study explores gene regulatory dynamics in a species with ab initio cellular endosperm development, broadening the taxonomic focus of the literature on gene expression in seeds. Moreover, it is the first to validate genes with imprinted endosperm expression in Mimulus guttatus, and will inform future studies on the genetic causes of seed failure in this model system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA