Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Neurobiol Dis ; 180: 106082, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925053

RESUMEN

Humans are thought to be more susceptible to neurodegeneration than equivalently-aged primates. It is not known whether this vulnerability is specific to anatomically-modern humans or shared with other hominids. The contribution of introgressed Neanderthal DNA to neurodegenerative disorders remains uncertain. It is also unclear how common variants associated with neurodegenerative disease risk are maintained by natural selection in the population despite their deleterious effects. In this study, we aimed to quantify the genome-wide contribution of Neanderthal introgression and positive selection to the heritability of complex neurodegenerative disorders to address these questions. We used stratified-linkage disequilibrium score regression to investigate the relationship between five SNP-based signatures of natural selection, reflecting different timepoints of evolution, and genome-wide associated variants of the three most prevalent neurodegenerative disorders: Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease. We found no evidence for enrichment of positively-selected SNPs in the heritability of Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's disease, suggesting that common deleterious disease variants are unlikely to be maintained by positive selection. There was no enrichment of Neanderthal introgression in the SNP-heritability of these disorders, suggesting that Neanderthal admixture is unlikely to have contributed to disease risk. These findings provide insight into the origins of neurodegenerative disorders within the evolution of Homo sapiens and addresses a long-standing debate, showing that Neanderthal admixture is unlikely to have contributed to common genetic risk of neurodegeneration in anatomically-modern humans.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Hombre de Neandertal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Hombre de Neandertal/genética , Enfermedades Neurodegenerativas/genética , Selección Genética
2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012536

RESUMEN

The transmembrane protein 106B (TMEM106B) gene is a susceptibility factor and disease modifier of frontotemporal dementia, but few studies have investigated its role in amyotrophic lateral sclerosis. The aim of this work was to assess the impact of the TMEM106B rs1990622 (A-major risk allele; G-minor allele) on phenotypic variability of 865 patients with amyotrophic lateral sclerosis. Demographic and clinical features were compared according to genotypes by additive, dominant, and recessive genetic models. Bulbar onset was overrepresented among carriers of the AA risk genotype, together with enhanced upper motor neuron involvement and poorer functional status in patients harboring at least one major risk allele (A). In a subset of 195 patients, we found that the homozygotes for the minor allele (GG) showed lower scores at the Edinburgh Cognitive and Behavioral Amyotrophic Lateral Sclerosis Screen, indicating a more severe cognitive impairment, mainly involving the amyotrophic lateral sclerosis-specific cognitive functions and memory. Moreover, lower motor neuron burden predominated among patients with at least one minor allele (G). Overall, we found that TMEM106B is a disease modifier of amyotrophic lateral sclerosis, whose phenotypic effects encompass both sites of onset and functional status (major risk allele), motor functions (both major risk and minor alleles), and cognition (minor allele).


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Esclerosis Amiotrófica Lateral/genética , Cognición , Demencia Frontotemporal/genética , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
3.
Neurol Sci ; 40(7): 1469-1473, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30903418

RESUMEN

INTRODUCTION: Previous studies have associated single-nucleotide polymorphisms (SNPs) in the gene encoding the detoxifying enzyme paraoxonase 1 (PON1) to the risk of sporadic ALS. Here, we aimed to assess the role of the coding rs662 (Q192R) SNP as a modifier of ALS phenotype. MATERIALS AND METHODS: We genotyped a cohort of 409 patients diagnosed with ALS at our Center between 2002 and 2009 (269 males and 140 females; mean age at onset, 58.3 ± 37.5 years). RESULTS: We found PON1 to be a disease modifier gene in ALS, with the minor allele G associated both with bulbar onset (30.9% vs. 24.6%, p = 0.013) and independently with reduced survival (OR = 1.38, p = 0.012) under a dominant model. No association was found with gender or age at onset. DISCUSSION: As this SNP is known to modify the detoxifying activity of paraxonase 1 with respect to different substrates as well as other activities of the protein, we hypothesize that the identified association might reflect specific motor neuron vulnerability to certain exogenous toxic substances metabolized less efficiently by the 192R alloenzyme, or to detrimental endogenous pathophysiological processes such as oxidative stress. Further exploration of this possible metabolic susceptibility could deepen our knowledge of ALS pathomechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Arildialquilfosfatasa/genética , Polimorfismo de Nucleótido Simple , Edad de Inicio , Esclerosis Amiotrófica Lateral/enzimología , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad
4.
J Neurol Neurosurg Psychiatry ; 88(4): 281, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27663272

RESUMEN

INTRODUCTION: The C9orf72 repeat expansion has been reported as a negative prognostic factor in amyotrophic lateral sclerosis (ALS). We have examined the prognostic impact of the C9orf72 repeat expansion in European subgroups based on gender and site of onset. METHODS: C9orf72 status and demographic/clinical data from 4925 patients with ALS drawn from 3 prospective ALS registers (Ireland, Italy and the Netherlands), and clinical data sets in the UK and Belgium. Flexible parametric survival models were built including known prognostic factors (age, diagnostic delay and site of onset), gender and the presence of an expanded repeat in C9orf72. These were used to explore the effects of C9orf72 on survival by gender and site of onset. Individual patient data (IPD) meta-analysis was used to estimate HRs for results of particular importance. RESULTS: 457 (8.95%) of 4925 ALS cases carried the C9orf72 repeat expansion. A meta-analysis of C9orf72 estimated a survival HR of 1.36 (1.18 to 1.57) for those carrying the expansion. Models evaluating interaction between gender and C9orf72 repeat expansions demonstrated that the reduced survival due to C9orf72 expansion was being driven by spinal onset males (HR 1.56 (95% CI 1.25 to 1.96). CONCLUSIONS: This study represents the largest combined analysis of the prognostic characteristics of the C9orf72 expansion. We have shown for the first time that the negative prognostic implication of this variant is driven by males with spinal onset disease, indicating a hitherto unrecognised gender-mediated effect of the variant that requires further exploration.

5.
Hum Mol Genet ; 23(8): 2220-31, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24256812

RESUMEN

Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (∼90%) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P = 1.11 × 10(-8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P = 8.62 × 10(-9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P = 7.69 × 10(-9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as ∼12% using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Cromosomas Humanos Par 17/genética , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Humanos , Pronóstico
6.
Ann Neurol ; 76(1): 120-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24931836

RESUMEN

OBJECTIVE: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. METHODS: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. RESULTS: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 × 10(-12) ) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 × 10(-11) ) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 × 10(-7) ) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 × 10(-7) ). INTERPRETATION: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas del Tejido Nervioso/genética , Proteínas/genética , Proteína C9orf72 , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 9/genética , Expansión de las Repeticiones de ADN/genética , Estudio de Asociación del Genoma Completo/tendencias , Humanos , Mutación , Polimorfismo de Nucleótido Simple/genética
7.
Alzheimers Dement ; 11(12): 1407-1416, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25936935

RESUMEN

A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimer's disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta-analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Aß42) and total-tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 × 10(-25)). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR = 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR = 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF-total-tau (P = .0110) but not Aß42 suggesting that TREM2's role in AD may involve tau dysfunction.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/genética , Enfermedades Neurodegenerativas/genética , Receptores Inmunológicos/genética , Anciano , Alelos , Esclerosis Amiotrófica Lateral/genética , Estudios de Casos y Controles , Femenino , Degeneración Lobar Frontotemporal/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Sitios de Carácter Cuantitativo , Factores de Riesgo , Población Blanca , Proteínas tau/líquido cefalorraquídeo
8.
PLoS Med ; 11(9): e1001713, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25226301

RESUMEN

BACKGROUND: Although altered lipid metabolism has been extensively implicated in the pathogenesis of Alzheimer disease (AD) through cell biological, epidemiological, and genetic studies, the molecular mechanisms linking cholesterol and AD pathology are still not well understood and contradictory results have been reported. We have used a Mendelian randomization approach to dissect the causal nature of the association between circulating lipid levels and late onset AD (LOAD) and test the hypothesis that genetically raised lipid levels increase the risk of LOAD. METHODS AND FINDINGS: We included 3,914 patients with LOAD, 1,675 older individuals without LOAD, and 4,989 individuals from the general population from six genome wide studies drawn from a white population (total n=10,578). We constructed weighted genotype risk scores (GRSs) for four blood lipid phenotypes (high-density lipoprotein cholesterol [HDL-c], low-density lipoprotein cholesterol [LDL-c], triglycerides, and total cholesterol) using well-established SNPs in 157 loci for blood lipids reported by Willer and colleagues (2013). Both full GRSs using all SNPs associated with each trait at p<5×10-8 and trait specific scores using SNPs associated exclusively with each trait at p<5 × 10-8 were developed. We used logistic regression to investigate whether the GRSs were associated with LOAD in each study and results were combined together by meta-analysis. We found no association between any of the full GRSs and LOAD (meta-analysis results: odds ratio [OR]=1.005, 95% CI 0.82-1.24, p = 0.962 per 1 unit increase in HDL-c; OR=0.901, 95% CI 0.65-1.25, p=0.530 per 1 unit increase in LDL-c; OR=1.104, 95% CI 0.89-1.37, p=0.362 per 1 unit increase in triglycerides; and OR=0.954, 95% CI 0.76-1.21, p=0.688 per 1 unit increase in total cholesterol). Results for the trait specific scores were similar; however, the trait specific scores explained much smaller phenotypic variance. CONCLUSIONS: Genetic predisposition to increased blood cholesterol and triglyceride lipid levels is not associated with elevated LOAD risk. The observed epidemiological associations between abnormal lipid levels and LOAD risk could therefore be attributed to the result of biological pleiotropy or could be secondary to LOAD. Limitations of this study include the small proportion of lipid variance explained by the GRS, biases in case-control ascertainment, and the limitations implicit to Mendelian randomization studies. Future studies should focus on larger LOAD datasets with longitudinal sampled peripheral lipid measures and other markers of lipid metabolism, which have been shown to be altered in LOAD. Please see later in the article for the Editors' Summary.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Colesterol/genética , Predisposición Genética a la Enfermedad/genética , Análisis de la Aleatorización Mendeliana/métodos , Triglicéridos/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Colesterol/sangre , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Estudios Longitudinales , Masculino , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Triglicéridos/sangre
9.
Front Aging Neurosci ; 15: 1067954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819716

RESUMEN

Background: The UNC13A gene is an established susceptibility locus for amyotrophic lateral sclerosis (ALS) and a determinant of shorter survival after disease onset, with up to 33.0 months difference in life expectancy for carriers of the rs12608932 risk genotype. However, its overall effect on other clinical features and ALS phenotypic variability is controversial. Methods: Genotype data of the UNC13A rs12608932 SNP (A-major allele; C-minor allele) was obtained from a cohort of 972 ALS patients. Demographic and clinical variables were collected, including cognitive and behavioral profiles, evaluated through the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) - Italian version and the Frontal Behavioral Inventory (FBI); upper and lower motor neuron involvement, assessed by the Penn Upper Motor Neuron Score (PUMNS) and the Lower Motor Neuron Score (LMNS)/Medical Research Council (MRC) scores, respectively; the ALS Functional Rating Scale Revised (ALSFRS-R) score at evaluation and progression rate; age and site of onset; survival. The comparison between the three rs12608932 genotypes (AA, AC, and CC) was performed using the additive, dominant, and recessive genetic models. Results: The rs12608932 minor allele frequency was 0.31 in our ALS cohort, in comparison to 0.33-0.41 reported in other Caucasian ALS populations. Carriers of at least one minor C allele (AC + CC genotypes) had a shorter median survival than patients with the wild-type AA genotype (-11.7 months, p = 0.013), even after adjusting for age and site of onset, C9orf72 mutational status and gender. Patients harboring at least one major A allele (AA + AC genotypes) and particularly those with the wild-type AA genotype showed a significantly higher PUMNS compared to CC carriers (p = 0.015 and padj = 0.037, respectively), thus indicating a more severe upper motor neuron involvement. Our analysis did not detect significant associations with all the other clinical parameters considered. Conclusion: Overall, our findings confirm the role of UNC13A as a determinant of survival in ALS patients and show the association of this locus also with upper motor neuron involvement.

10.
Front Cell Neurosci ; 17: 1112405, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937187

RESUMEN

Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts. Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype. Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days. Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.

11.
Nat Commun ; 13(1): 6901, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371497

RESUMEN

Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/epidemiología , Superóxido Dismutasa/genética , Fenotipo , Mutación
12.
NPJ Genom Med ; 7(1): 8, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091648

RESUMEN

There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.

13.
Front Cell Neurosci ; 16: 1050596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589292

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods: Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results: There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion: Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.

14.
Brain Commun ; 3(4): fcab236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708205

RESUMEN

Evidence indicates that common variants found in genome-wide association studies increase risk of disease through gene regulation via expression Quantitative Trait Loci. Using multiple genome-wide methods, we examined if Single Nucleotide Polymorphisms increase risk of Amyotrophic Lateral Sclerosis through expression Quantitative Trait Loci, and whether expression Quantitative Trait Loci expression is consistent across people who had Amyotrophic Lateral Sclerosis and those who did not. In combining public expression Quantitative Trait Loci data with Amyotrophic Lateral Sclerosis genome-wide association studies, we used Summary-data-based Mendelian Randomization to confirm that SCFD1 was the only gene that was genome-wide significant in mediating Amyotrophic Lateral Sclerosis risk via expression Quantitative Trait Loci (Summary-data-based Mendelian Randomization beta = 0.20, standard error = 0.04, P-value = 4.29 × 10-6). Using post-mortem motor cortex, we tested whether expression Quantitative Trait Loci showed significant differences in expression between Amyotrophic Lateral Sclerosis (n = 76) and controls (n = 25), genome-wide. Of 20 757 genes analysed, the two most significant expression Quantitative Trait Loci to show differential in expression between Amyotrophic Lateral Sclerosis and controls involve two known Amyotrophic Lateral Sclerosis genes (SCFD1 and VCP). Cis-acting SCFD1 expression Quantitative Trait Loci downstream of the gene showed significant differences in expression between Amyotrophic Lateral Sclerosis and controls (top expression Quantitative Trait Loci beta = 0.34, standard error = 0.063, P-value = 4.54 × 10-7). These SCFD1 expression Quantitative Trait Loci also significantly modified Amyotrophic Lateral Sclerosis survival (number of samples = 4265, hazard ratio = 1.11, 95% confidence interval = 1.05-1.17, P-value = 2.06 × 10-4) and act as an Amyotrophic Lateral Sclerosis trans-expression Quantitative Trait Loci hotspot for a wider network of genes enriched for SCFD1 function and Amyotrophic Lateral Sclerosis pathways. Using gene-set analyses, we found the genes that correlate with this trans-expression Quantitative Trait Loci hotspot significantly increase risk of Amyotrophic Lateral Sclerosis (beta = 0.247, standard deviation = 0.017, P = 0.001) and schizophrenia (beta = 0.263, standard deviation = 0.008, P-value = 1.18 × 10-5), a disease that genetically correlates with Amyotrophic Lateral Sclerosis. In summary, SCFD1 expression Quantitative Trait Loci are a major factor in Amyotrophic Lateral Sclerosis, not only influencing disease risk but are differentially expressed in post-mortem Amyotrophic Lateral Sclerosis. SCFD1 expression Quantitative Trait Loci show distinct expression profiles in Amyotrophic Lateral Sclerosis that correlate with a wider network of genes that also confer risk of the disease and modify the disease's duration.

15.
Nat Genet ; 53(12): 1636-1648, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34873335

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Mutación , Neuronas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Colesterol/sangre , Progresión de la Enfermedad , Femenino , Glutamina/metabolismo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Repeticiones de Microsatélite , Enfermedades Neurodegenerativas/genética , Sitios de Carácter Cuantitativo , RNA-Seq , Factores de Riesgo
16.
Cell Rep ; 33(4): 108323, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33113361

RESUMEN

We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10-9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients' fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: -2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: -1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients.


Asunto(s)
Aciltransferasas/efectos adversos , Esclerosis Amiotrófica Lateral/complicaciones , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética , Pérdida de Peso/genética , Esclerosis Amiotrófica Lateral/genética , Predisposición Genética a la Enfermedad , Humanos
17.
Acta Neuropathol Commun ; 7(1): 115, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315673

RESUMEN

The expansion of a hexanucleotide repeat GGGGCC in C9orf72 is the most common known cause of ALS accounting for ~ 40% familial cases and ~ 7% sporadic cases in the European population. In most people, the repeat length is 2, but in people with ALS, hundreds to thousands of repeats may be observed. A small proportion of people have an intermediate expansion, of the order of 20 to 30 repeats in size, and it remains unknown whether intermediate expansions confer risk of ALS in the same way that massive expansions do. We investigated the association of this intermediate repeat with ALS by performing a meta-analysis of four previously published studies and a new British/Alzheimer's Disease Neuroimaging Initiative dataset of 1295 cases and 613 controls. The final dataset comprised 5071 cases and 3747 controls. Our meta-analysis showed association between ALS and intermediate C9orf72 repeats of 24 to 30 repeats in size (random-effects model OR = 4.2, 95% CI = 1.23-14.35, p-value = 0.02). Furthermore, we showed a different frequency of the repeat between the northern and southern European populations (Fisher's exact test p-value = 5 × 10- 3). Our findings provide evidence for the association between intermediate repeats and ALS (p-value = 2 × 10- 4) with direct relevance for research and clinical practice by showing that an expansion of 24 or more repeats should be considered pathogenic.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Población Blanca/genética , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/epidemiología , Bases de Datos Genéticas/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Secuenciación Completa del Genoma/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-30835568

RESUMEN

Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Automatización , ADN/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
20.
Amyotroph Lateral Scler ; 9(2): 81-4, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18427999

RESUMEN

Glutathione S-transferase omega 1 and 2 (GSTO1 and 2) protect from oxidative stress, a possible pathogenic mechanism underlying the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Significant association of age of onset in Alzheimer's patients with GSTO1 and 2 had recently been identified, suggesting a possibly similar association with ALS. In this study 12 Hapmap tagged SNPs in GSTO1 and 2 were genotyped in 251 Caucasian British, Australian and Swedish familial ALS (FALS) cases. No association was found for age of onset and survival of FALS in the British and Australian patients. In the Swedish patients, association for age of onset was found with several SNPs (p = 0.003-0.048). These results suggest a possible effect of the GSTO1 and 2 locus on age of onset of FALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Glutatión Transferasa/genética , Polimorfismo de Nucleótido Simple/genética , Medición de Riesgo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/enzimología , Femenino , Predisposición Genética a la Enfermedad/epidemiología , Predisposición Genética a la Enfermedad/genética , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA