Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328915

RESUMEN

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Productos del Gen gag/genética , Cuerpos Multivesiculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , ARN Mensajero/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica , Dominios Proteicos , Retroelementos/genética
2.
PLoS Genet ; 17(1): e1009287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465062

RESUMEN

Huntington's disease is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract at the N-terminus of a large cytoplasmic protein. The Drosophila huntingtin (htt) gene is widely expressed during all developmental stages from embryos to adults. However, Drosophila htt mutant individuals are viable with no obvious developmental defects. We asked if such defects could be detected in htt mutants in a background that had been genetically sensitized to reveal cryptic developmental functions. Amyloid precursor protein (APP) is linked to Alzheimer's disease. Appl is the Drosophila APP ortholog and Appl signaling modulates axon outgrowth in the mushroom bodies (MBs), the learning and memory center in the fly, in part by recruiting Abl tyrosine kinase. Here, we find that htt mutations suppress axon outgrowth defects of αß neurons in Appl mutant MB by derepressing the activity of Abl. We show that Abl is required in MB αß neurons for their axon outgrowth. Importantly, both Abl overexpression and lack of expression produce similar phenotypes in the MBs, indicating the necessity of tightly regulating Abl activity. We find that Htt behaves genetically as a repressor of Abl activity, and consistent with this, in vivo FRET-based measurements reveal a significant increase in Abl kinase activity in the MBs when Htt levels are reduced. Thus, Appl and Htt have essential but opposing roles in MB development, promoting and suppressing Abl kinase activity, respectively, to maintain the appropriate intermediate level necessary for axon growth.


Asunto(s)
Aciltransferasas/genética , Axones/metabolismo , Proteínas de Drosophila/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Transporte Axonal/genética , Axones/patología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Humanos , Enfermedad de Huntington/patología , Aprendizaje/fisiología , Memoria/fisiología , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/patología , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal/genética
3.
PLoS Genet ; 16(5): e1008767, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32357156

RESUMEN

Despite the importance of dendritic targeting in neural circuit assembly, the mechanisms by which it is controlled still remain incompletely understood. We previously showed that in the developing Drosophila antennal lobe, the Wnt5 protein forms a gradient that directs the ~45˚ rotation of a cluster of projection neuron (PN) dendrites, including the adjacent DA1 and VA1d dendrites. We report here that the Van Gogh (Vang) transmembrane planar cell polarity (PCP) protein is required for the rotation of the DA1/VA1d dendritic pair. Cell type-specific rescue and mosaic analyses showed that Vang functions in the olfactory receptor neurons (ORNs), suggesting a codependence of ORN axonal and PN dendritic targeting. Loss of Vang suppressed the repulsion of the VA1d dendrites by Wnt5, indicating that Wnt5 signals through Vang to direct the rotation of the DA1 and VA1d glomeruli. We observed that the Derailed (Drl)/Ryk atypical receptor tyrosine kinase is also required for the rotation of the DA1/VA1d dendritic pair. Antibody staining showed that Drl/Ryk is much more highly expressed by the DA1 dendrites than the adjacent VA1d dendrites. Mosaic and epistatic analyses showed that Drl/Ryk specifically functions in the DA1 dendrites in which it antagonizes the Wnt5-Vang repulsion and mediates the migration of the DA1 glomerulus towards Wnt5. Thus, the nascent DA1 and VA1d glomeruli appear to exhibit Drl/Ryk-dependent biphasic responses to Wnt5. Our work shows that the final patterning of the fly olfactory map is the result of an interplay between ORN axons and PN dendrites, wherein converging pre- and postsynaptic processes contribute key Wnt5 signaling components, allowing Wnt5 to orient the rotation of nascent synapses through a PCP mechanism.


Asunto(s)
Antenas de Artrópodos/crecimiento & desarrollo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Antenas de Artrópodos/metabolismo , Axones/metabolismo , Tipificación del Cuerpo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Neuronas Receptoras Olfatorias/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Proteínas Wnt/genética
4.
Adv Exp Med Biol ; 1076: 147-172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951819

RESUMEN

Muscular dystrophy (MD) is a group of muscle weakness disease involving in inherited genetic conditions. MD is caused by mutations or alteration in the genes responsible for the structure and functioning of muscles. There are many different types of MD which have a wide range from mild symptoms to severe disability. Some types involve the muscles used for breathing which eventually affect life expectancy. This chapter provides an overview of the MD types, its gene mutations, and the Drosophila MD models. Specifically, the Duchenne muscular dystrophy (DMD), the most common form of MD, will be thoroughly discussed including Dystrophin genes, their isoforms, possible mechanisms, and signaling pathways of pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster , Distrofia Muscular Animal , Animales , Humanos
5.
J Neurosci ; 34(45): 14961-72, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25378162

RESUMEN

During development, dendrites migrate to their correct locations in response to environmental cues. The mechanisms of dendritic guidance are poorly understood. Recent work has shown that the Drosophila olfactory map is initially formed by the spatial segregation of the projection neuron (PN) dendrites in the developing antennal lobe (AL). We report here that between 16 and 30 h after puparium formation, the PN dendrites undergo dramatic rotational reordering to achieve their final glomerular positions. During this period, a novel set of AL-extrinsic neurons express high levels of the Wnt5 protein and are tightly associated with the dorsolateral edge of the AL. Wnt5 forms a dorsolateral-high to ventromedial-low pattern in the antennal lobe neuropil. Loss of Wnt5 prevents the ventral targeting of the dendrites, whereas Wnt5 overexpression disrupts dendritic patterning. We find that Drl/Ryk, a known Wnt5 receptor, is expressed in a dorsolateral-to-ventromedial (DL > VM) gradient by the PN dendrites. Loss of Drl in the PNs results in the aberrant ventromedial targeting of the dendrites, a defect that is suppressed by reduction in Wnt5 gene dosage. Conversely, overexpression of Drl in the PNs results in the dorsolateral targeting of their dendrites, an effect that requires Drl's cytoplasmic domain. We propose that Wnt5 acts as a repulsive guidance cue for the PN dendrites, whereas Drl signaling in the dendrites inhibits Wnt5 signaling. In this way, the precise expression patterns of Wnt5 and Drl orient the PN dendrites allowing them to target their final glomerular positions.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Neurogénesis , Neuronas Receptoras Olfatorias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Antenas de Artrópodos/crecimiento & desarrollo , Antenas de Artrópodos/inervación , Dendritas/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurópilo/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Wnt/genética , Vía de Señalización Wnt
6.
J Neurosci ; 31(2): 492-500, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228159

RESUMEN

Duchenne muscular dystrophy is caused by mutations in the Dystrophin gene and is characterized by muscle degeneration and the occurrence of mental deficits in a significant number of patients. Although Dystrophin and its closely related ortholog Utrophin are present at a variety of synapses, little is known about their roles in the nervous system. Previously, we reported that absence of postsynaptic Dystrophin from the Drosophila neuromuscular junction (NMJ) disrupts synaptic homeostasis, resulting in increased stimulus-evoked neurotransmitter release. Here, we show that RhoGAP crossveinless-c (cv-c), a negative regulator of Rho GTPase signaling pathways, genetically interacts with Dystrophin. Electrophysiological characterization of the cv-c-deficient NMJ and the use of presynaptic- and postsynaptic-specific transgenic rescue versus RNA interference reveal that the absence of postsynaptic cv-c results in elevated evoked neurotransmitter release. The cv-c mutant NMJ exhibits an increased number of presynaptic neurotransmitter release sites and higher probability of vesicle release without apparent changes in postsynaptic glutamate receptor numbers or function. Moreover, we find that decreasing expression of the Rho GTPase Cdc42 suppresses the high neurotransmitter release in the cv-c and Dystrophin mutants, suggesting that Cdc42 is a substrate of Cv-c. These results indicate that Dystrophin and the Rho GTPase signaling pathway likely interact at the postsynaptic side of the NMJ to maintain synaptic homeostasis. The absence of this postsynaptic pathway results in presynaptic structural and functional alterations, suggesting that retrograde signaling mechanisms are affected.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Distrofina/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Distrofina/genética , Proteínas Activadoras de GTPasa/genética , Homeostasis , Larva , Potenciales Postsinápticos Miniatura , Mutación , Neurotransmisores/metabolismo , Interferencia de ARN , Receptores de Glutamato/metabolismo , Transducción de Señal , Alas de Animales/metabolismo , Proteína de Unión al GTP cdc42/biosíntesis
7.
Adv Healthc Mater ; 11(24): e2201138, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36314397

RESUMEN

Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Técnicas de Cultivo de Célula , Proliferación Celular , Línea Celular , Reactores Biológicos
8.
Nat Neurosci ; 10(11): 1423-32, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17934456

RESUMEN

Numerous studies have shown that ingrowing olfactory axons exert powerful inductive influences on olfactory map development. From an overexpression screen, we have identified wnt5 as a potent organizer of the olfactory map in Drosophila melanogaster. Loss of wnt5 resulted in severe derangement of the glomerular pattern, whereas overexpression of wnt5 resulted in the formation of ectopic midline glomeruli. Cell type-specific cDNA rescue and mosaic experiments showed that wnt5 functions in olfactory neurons. Mutation of the derailed (drl) gene, encoding a receptor for Wnt5, resulted in derangement of the glomerular map, ectopic midline glomeruli and the accumulation of Wnt5 at the midline. We show here that drl functions in glial cells, where it acts upstream of wnt5 to modulate its function in glomerular patterning. Our findings establish wnt5 as an anterograde signal that is expressed by olfactory axons and demonstrate a previously unappreciated, yet powerful, role for glia in patterning the Drosophila olfactory map.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Proteínas Wnt/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Mutación/fisiología
9.
Nat Commun ; 12(1): 1849, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758182

RESUMEN

The remodeling of neurons is a conserved fundamental mechanism underlying nervous system maturation and function. Astrocytes can clear neuronal debris and they have an active role in neuronal remodeling. Developmental axon pruning of Drosophila memory center neurons occurs via a degenerative process mediated by infiltrating astrocytes. However, how astrocytes are recruited to the axons during brain development is unclear. Using an unbiased screen, we identify the gene requirement of orion, encoding for a chemokine-like protein, in the developing mushroom bodies. Functional analysis shows that Orion is necessary for both axonal pruning and removal of axonal debris. Orion performs its functions extracellularly and bears some features common to chemokines, a family of chemoattractant cytokines. We propose that Orion is a neuronal signal that elicits astrocyte infiltration and astrocyte-driven axonal engulfment required during neuronal remodeling in the Drosophila developing brain.


Asunto(s)
Astrocitos/metabolismo , Quimiocinas/metabolismo , Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Plasticidad Neuronal/fisiología , Secuencias de Aminoácidos , Animales , Axones/metabolismo , Quimiocinas/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cuerpos Pedunculados/crecimiento & desarrollo , Mutagénesis , Unión Proteica , Interferencia de ARN , Secuenciación Completa del Genoma
10.
PLoS One ; 16(4): e0249748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33848304

RESUMEN

A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.


Asunto(s)
Ganglios Espinales/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/metabolismo , Células Receptoras Sensoriales/metabolismo , Vía de Señalización Wnt , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Regulación de la Expresión Génica , Humanos , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Wistar , Nervio Ciático/patología , Células Receptoras Sensoriales/patología
11.
Cell Rep ; 37(3): 109834, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686333

RESUMEN

WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Células Sf9 , Relación Estructura-Actividad , Proteínas Wnt/genética
12.
J Neurosci ; 28(14): 3781-9, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385336

RESUMEN

The congenital muscular dystrophies present in infancy with muscle weakness and are often associated with mental retardation. Many of these inherited disorders share a common etiology: defective O-glycosylation of alpha-dystroglycan, a component of the dystrophin complex. Protein-O-mannosyl transferase 1 (POMT1) is the first enzyme required for the glycosylation of alpha-dystroglycan, and mutations in the POMT1 gene can lead to both Walker-Warburg syndrome (WWS) and limb girdle muscular dystrophy type 2K (LGMD2K). WWS is associated with severe mental retardation and major structural abnormalities in the brain; however, LGMD2K patients display a more mild retardation with no obvious structural defects in the brain. In a screen for synaptic mutants in Drosophila, we identified mutations in the Drosophila ortholog of POMT1, dPOMT1. Because synaptic defects are a plausible cause of mental retardation, we investigated the molecular and physiological defects associated with loss of dPOMT1 in Drosophila. In dPOMT1 mutants, there is a decrease in the efficacy of synaptic transmission and a change in the subunit composition of the postsynaptic glutamate receptors at the neuromuscular junction. We demonstrate that dPOMT1 is required to glycosylate the Drosophila dystroglycan ortholog Dg in vivo, and that this is the likely cause of these synaptic defects because (1) mutations in Dg lead to similar synaptic defects and (2) genetic interaction studies suggest that dPOMT1 and Dg function in the same pathway. These results are consistent with the model that dPOMT1-dependent glycosylation of Dg is necessary for proper synaptic function and raise the possibility that similar synaptic defects occur in the congenital muscular dystrophies.


Asunto(s)
Manosiltransferasas/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación , Unión Neuromuscular/fisiopatología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Anestésicos Locales/farmacología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Distroglicanos/metabolismo , Regulación de la Expresión Génica/genética , Glicosilación , Receptores de Glutamato/fisiología , Tetrodotoxina/farmacología
13.
J Neurosci ; 28(19): 5105-14, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463264

RESUMEN

The Dystrophin protein is encoded by a gene that, when mutated in humans, can cause Duchenne muscular dystrophy, a disease characterized by progressive muscle wasting. A number of Duchenne patients also exhibit poorly understood mental retardation, likely associated with loss of a brain-specific isoform. Furthermore, although Dystrophin isoforms and the related Utrophin protein have long been known to localize at synapses, their functions remain essentially unknown. In Drosophila, we find that the CNS-specific Dp186 isoform localizes to the embryonic and larval neuropiles, regions rich in synaptic contacts. In the absence of Dp186, evoked but not spontaneous presynaptic release is significantly enhanced. Increased presynaptic release can be fully rescued to wild-type levels by expression of a Dp186 transgene in the postsynaptic motoneuron, indicating that Dp186 likely regulates a retrograde signaling pathway. Potentiation of synaptic currents in the mutant also occurs when cholinergic transmission is inhibited or in the absence of Glass Bottom Boat (Gbb) or Wishful Thinking (Wit), a TGF-beta ligand and receptor, respectively, both previously implicated in synaptic retrograde signaling. These results are consistent with the possibility that Dp186 modulates other non-Gbb/Wit-dependent retrograde signaling pathways required to maintain normal synaptic physiology.


Asunto(s)
Sistema Nervioso Central/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/fisiología , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Distrofina/deficiencia , Distrofina/genética , Conductividad Eléctrica , Embrión no Mamífero/metabolismo , Larva/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Mutación , Neurópilo/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factor de Crecimiento Transformador beta/metabolismo
14.
PLoS Biol ; 4(11): e348, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17032066

RESUMEN

The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF) receptor, and Jun N-terminal kinase (JNK) signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF)-Breathless (FGF receptor) axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiología , Neuronas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axones/metabolismo , Proteínas Dishevelled , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inmunohistoquímica , MAP Quinasa Quinasa 4/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Fenotipo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transgenes , Proteínas Wnt/metabolismo , Proteína de Unión al GTP rac1/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1579-1591, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30904609

RESUMEN

Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Asociadas a la Distrofina/genética , Distrofina/genética , Unión Neuromuscular/genética , Proteína de Unión al GTP cdc42/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/deficiencia , Proteínas Asociadas a la Distrofina/metabolismo , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Potenciales Sinápticos/genética , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
16.
Brain Res ; 1712: 158-166, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711401

RESUMEN

The Drosophila olfactory system provides an excellent model to elucidate the neural circuits that control behaviors elicited by environmental stimuli. Despite significant progress in defining olfactory circuit components and their connectivity, little is known about the mechanisms that transfer the information from the primary antennal olfactory receptor neurons to the higher order brain centers. Here, we show that the Dystrophin Dp186 isoform is required in the olfactory system circuit for olfactory functions. Using two-photon calcium imaging, we found the reduction of calcium influx in olfactory receptor neurons (ORNs) and also the defect of GABAA mediated inhibitory input in the projection neurons (PNs) in Dp186 mutation. Moreover, the Dp186 mutant flies which display a decreased odor avoidance behavior were rescued by Dp186 restoration in the Drosophila olfactory neurons in either the presynaptic ORNs or the postsynaptic PNs. Therefore, these results revealed a role for Dystrophin, Dp 186 isoform in gain control of the olfactory synapse via the modulation of excitatory and inhibitory synaptic inputs to olfactory projection neurons.


Asunto(s)
Distrofina/metabolismo , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/fisiología , Femenino , Interneuronas/metabolismo , Masculino , Odorantes , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/fisiología
17.
Mech Dev ; 124(7-8): 617-30, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17543506

RESUMEN

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Distrofina/metabolismo , Músculos/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Distrofina/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculos/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmisión Sináptica
18.
J Neurosci ; 26(1): 333-44, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399704

RESUMEN

Mutations in the human dystrophin gene cause the Duchenne and Becker muscular dystrophies. The Dystrophin protein provides a structural link between the muscle cytoskeleton and extracellular matrix to maintain muscle integrity. Recently, Dystrophin has also been found to act as a scaffold for several signaling molecules, but the roles of dystrophin-mediated signaling pathways remain unknown. To further our understanding of this aspect of the function of dystrophin, we have generated Drosophila mutants that lack the large dystrophin isoforms and analyzed their role in synapse function at the neuromuscular junction. In expression and rescue studies, we show that lack of the large dystrophin isoforms in the postsynaptic muscle cell leads to elevated evoked neurotransmitter release from the presynaptic apparatus. Overall synapse size, the size of the readily releasable vesicle pool as assessed with hypertonic shock, and the number of presynaptic neurotransmitter release sites (active zones) are not changed in the mutants. Short-term synaptic facilitation of evoked transmitter release is decreased in the mutants, suggesting that the absence of dystrophin results in increased probability of release. Absence of the large dystrophin isoforms does not lead to changes in muscle cell morphology or alterations in the postsynaptic electrical response to spontaneously released neurotransmitter. Therefore, postsynaptic glutamate receptor function does not appear to be affected. Our results indicate that the postsynaptically localized scaffolding protein Dystrophin is required for appropriate control of neuromuscular synaptic homeostasis.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Distrofina/biosíntesis , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Animales , Transporte Axonal/fisiología , Drosophila , Proteínas de Drosophila/genética , Distrofina/genética , Mutación , Unión Neuromuscular/genética , Neurotransmisores/genética
19.
Curr Opin Cell Biol ; 41: 125-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236823

RESUMEN

The nuclear envelope (NE) physically separates the cytoplasmic and nuclear compartments. While this barrier provides advantages, it also presents a challenge for the nuclear export of large ribonucleoprotein (RNP) complexes. Decades-old dogma holds that all such border-crossing is via the nuclear pore complex (NPC). However, the diameter of the NPC central channel limits the passage of large cargos. Here, we review evidence that such large RNPs employ an endogenous NE-budding pathway, previously thought to be exclusive to the nuclear egress of Herpes viruses. We discuss this and other models proposed, the likelihood that this pathway is conserved, and the consequences of disrupting NE-budding for synapse development, localized translation of synaptic mRNAs, and laminopathies inducing accelerated aging.


Asunto(s)
Membrana Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte Activo de Núcleo Celular , Animales , Herpesviridae/metabolismo , Humanos , Modelos Biológicos , Ribonucleoproteínas/metabolismo
20.
Cell Death Dis ; 7(11): e2479, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882948

RESUMEN

The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal.


Asunto(s)
Apoptosis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Apoptosis/genética , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Asesinas Naturales/metabolismo , Hígado/citología , Hígado/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Tirosina Quinasas Receptoras/genética , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA