Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glob Chang Biol ; 28(6): 2124-2132, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936166

RESUMEN

Free-living nematodes are one of the most diverse metazoan taxa in terrestrial ecosystems and are critical to the global soil carbon (C) cycling through their role in organic matter decomposition. They are highly dependent on water availability for movement, feeding, and reproduction. Projected changes in precipitation across temporal and spatial scales will affect free-living nematodes and their contribution to C cycling with unforeseen consequences. We experimentally reduced and increased growing season precipitation for 2 years in 120 field plots at arid, semiarid, and mesic grasslands and assessed precipitation controls on nematode genus diversity, community structure, and C footprint. Increasing annual precipitation reduced nematode diversity and evenness over time at all sites, but the mechanism behind these temporal responses differed for dry and moist grasslands. In arid and semiarid sites, there was a loss of drought-adapted rare taxa with increasing precipitation, whereas in mesic conditions increases in the population of predaceous taxa with increasing precipitation may have caused the observed reductions in dominant colonizer taxa and yielded the negative precipitation-diversity relationship. The effects of temporal changes in precipitation on all aspects of the nematode C footprint (respiration, production, and biomass C) were all dependent on the site (significant spatial × temporal precipitation interaction) and consistent with diversity responses at mesic, but not at arid and semiarid, grasslands. These results suggest that free-living nematode biodiversity and their C footprint will respond to climate change-driven shifts in water availability and that more frequent extreme wet years may accelerate decomposition and C turnover in semiarid and arid grasslands.


Asunto(s)
Pradera , Nematodos , Animales , Carbono , Huella de Carbono , Ecosistema , Lluvia , Suelo/química
2.
Glob Chang Biol ; 28(2): 644-653, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657350

RESUMEN

Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate-dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region. Our transects captured gradients of surface ages possibly up to 4.5 million years and the soils have been free from human disturbance for their entire history. Our data support the hypothesis that soils exposed during the LGM are now less suitable habitats for invertebrates than those that have been exposed by deglaciation following the LGM. Our results show that faunal abundance, community composition, and diversity were all strongly affected by climate-driven changes since the LGM. Soils more recently exposed by the glacial recession (as indicated by distances from present ice surfaces) had higher faunal abundances and species richness than older exposed soils. Higher abundances of the dominant nematode Scottnema were found in older exposed soils, while Eudorylaimus, Plectus, tardigrades, and rotifers preferentially occurred in more recently exposed soils. Approximately 30% of the soils from which invertebrates could be extracted had only Scottnema, and these single-taxon communities occurred more frequently in soils exposed for longer periods of time. Our structural equation modeling of abiotic drivers highlighted soil salinity as a key mediator of Scottnema responses to soil exposure age. These changes in soil habitat suitability and biotic communities since the LGM indicate that Antarctic terrestrial biodiversity throughout the TAM will be highly altered by climate warming.


Asunto(s)
Ecosistema , Suelo , Anciano , Animales , Regiones Antárticas , Biodiversidad , Humanos , Invertebrados
3.
Proc Natl Acad Sci U S A ; 116(26): 12883-12888, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186355

RESUMEN

Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.


Asunto(s)
Sequías , Pradera , Herbivoria , Nematodos/fisiología , Conducta Predatoria , Suelo/parasitología , Animales , Inundaciones
4.
Oecologia ; 193(3): 761-771, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32656605

RESUMEN

Plant parasitic nematodes are among the greatest consumers of primary production in terrestrial ecosystems. Their feeding strategies can be divided into endoparasites and ectoparasites that differ substantially, not only in their damage potential to host tissue and primary production, but also in their susceptibility to environmental changes. Climate change is predicted to increase variability of precipitation in many systems, yet the effects on belowground biodiversity and associated impacts on primary productivity remain poorly understood. To examine the impact of altered precipitation on endo- and ectoparasitic soil nematodes, we conducted a 2-year precipitation manipulation study across an arid, a semiarid, and a mesic grassland. Plant parasite feeding type abundance, functional guilds, and herbivory index in response to precipitation were evaluated. Responses of endo- and ectoparasites to increased precipitation varied by grassland type. There was little response of ectoparasites to increased precipitation although their population declined at the mesic site with increased precipitation. The abundance of endoparasites remained unchanged with increasing precipitation at the arid site, increased at the semiarid, and decreased at the mesic site. The herbivory index followed closely the trends seen in the endoparasites response by stagnating at the arid site, increasing at the semiarid, and decreasing at the mesic site. Our findings suggest that altered precipitation has differing effects on plant parasite feeding strategies as well as functional guilds. This may have important implications for grassland productivity, as plant parasite pressure may exacerbate the effects of climate change on host plants.


Asunto(s)
Ecosistema , Nematodos , Animales , Biodiversidad , Cambio Climático , Pradera , Herbivoria , Lluvia , Suelo
5.
Conserv Biol ; 33(3): 590-600, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30306643

RESUMEN

Clearance and perturbation of Amazonian forests are one of the greatest threats to tropical biodiversity conservation of our times. A better understanding of how soil communities respond to Amazonian deforestation is crucially needed to inform policy interventions that effectively protect biodiversity and the essential ecosystem services it provides. We assessed the impact of deforestation and ecosystem conversion to arable land on Amazonian soil biodiversity through a meta-analysis. We analyzed 274 pairwise comparisons of soil biodiversity in Amazonian primary forests and sites under different stages of deforestation and land-use conversion: disturbed (wildfire and selective logging) and slash-and-burnt forests, pastures, and cropping systems. Overall, 60% and 51% of responses of soil macrofauna and microbial community attributes (i.e., abundance, biomass, richness, and diversity indexes) to deforestation were negative, respectively. We found few studies on mesofauna (e.g., microarthropods) and microfauna (e.g., protozoa and nematodes), so those groups could not be analyzed. Macrofauna abundance and biomass were more vulnerable to the displacement of forests by pastures than by agricultural fields, whereas microbes showed the opposite pattern. Effects of Amazonian deforestation on macrofauna were more detrimental at sites with mean annual precipitation >1900 mm, and higher losses of microbes occurred in highly acidic soils (pH < 4.5). Limited geographic coverage, omission of meso- and microfauna, and low taxonomic resolution were main factors impairing generalizations from the data set. Few studies assessed the impacts of within-forest disturbance (wildfires and selective logging) on soil species in Amazonia, where logging operations rapidly expand across public lands and more frequent severe dry seasons are increasing the prevalence of wildfires.


Deforestación en el Amazonas y Biodiversidad del Suelo Resumen Actualmente, el despeje y la perturbación de los bosques del Amazonas son las principales amenazas para la conservación de la biodiversidad tropical. Se requiere urgentemente de un mejor entendimiento sobre cómo las comunidades del suelo responden a la deforestación amazónica para informar a las intervenciones políticas que protegen efectivamente a la biodiversidad y a los servicios ambientales esenciales que proporciona. Evaluamos el impacto de la deforestación y la conversión del ecosistema a suelo arable sobre la biodiversidad del suelo amazónico por medio de un meta-análisis. Analizamos 274 comparaciones por pares de la biodiversidad del suelo amazónico en bosques primarios y sitios bajo diferentes etapas de deforestación y conversión de uso de suelo: bosques perturbados (incendios forestales y tala selectiva) y de corte-y-quema, pasturas, y sistemas agrícolas. En general, el 60% y el 51% de las respuestas de los atributos (es decir, abundancia, biomasa, riqueza, e índices de biodiversidad) de la macrofauna del suelo y de las comunidades microbianas ante la deforestación fueron negativas, respectivamente. Encontramos pocos estudios sobre la mesofauna (p. ej.: microartrópodos) y la microfauna (p. ej.: protozoarios y nematodos), así que estos grupos no pudieron ser analizados. La abundancia de la macrofauna y la biomasa fueron más vulnerables al desplazamiento de bosques por las pasturas que por los campos agrícolas, mientras que los microbios mostraron el patrón opuesto. Los efectos de la deforestación amazónica sobre la macrofauna fueron más dañinos en sitios con una precipitación anual media mayor a los 1,900 mm, y ocurrieron pérdidas más elevadas de microbios en suelos con una acidez alta (pH < 4.5). La cobertura geográfica limitada, la omisión de la mesofauna y la microfauna, y la baja resolución taxonómica fueron los factores principales que obstaculizaron las generalizaciones del conjunto de datos. Pocos estudios evaluaron los impactos de las perturbaciones internas del bosque (incendios forestales y tala selectiva) sobre las especies del suelo amazónico, a la vez que las operaciones de tala se expanden rápidamente en los terrenos públicos y la ocurrencia con mayor frecuencia de temporadas con sequía grave aumentan la prevalencia de los incendios forestales.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Biodiversidad , Brasil , Ecosistema , Bosques
7.
mSystems ; 8(1): e0125422, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36719224

RESUMEN

Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.


Asunto(s)
Biodiversidad , Microbiota , Humanos , Regiones Antárticas , Cubierta de Hielo , Suelo , Plantas
8.
PLoS One ; 11(3): e0150860, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26938642

RESUMEN

Increasing demand for biofuel has intensified land-use change (LUC) for sugarcane (Saccharum officinarum) expansion in Brazil. Assessments of soil quality (SQ) response to this LUC are essential for quantifying and monitoring sustainability of sugarcane production over time. Since there is not a universal methodology for assessing SQ, we conducted a field-study at three sites within the largest sugarcane-producing region of Brazil to develop a SQ index (SQI). The most common LUC scenario (i.e., native vegetation to pasture to sugarcane) was evaluated using six SQI strategies with varying complexities. Thirty eight soil indicators were included in the total dataset. Two minimum datasets were selected: one using principal component analysis (7 indicators) and the other based on expert opinion (5 indicators). Non-linear scoring curves were used to interpret the indicator values. Weighted and non-weighted additive methods were used to combine individual indicator scores into an overall SQI. Long-term conversion from native vegetation to extensive pasture significantly decreased overall SQ. In contrast, conversion from pasture to sugarcane had no significant impact on overall SQ at the regional scale, but site-specific responses were found. In general, sugarcane production improved chemical attributes (i.e., higher macronutrient levels and lower soil acidity); however it has negative effects on physical and biological attributes (i.e., higher soil compaction and structural degradation as well as lower soil organic carbon (SOC), abundance and diversity of macrofauna and microbial activity). Overall, we found that simple, user-friendly strategies were as effective as more complex ones for identifying SQ changes. Therefore, as a protocol for SQ assessments in Brazilian sugarcane areas, we recommend using a small number of indicators (e.g., pH, P, K, Visual Evaluation of Soil Structure -VESS scores and SOC concentration) and proportional weighting to reflect chemical, physical and biological processes within the soil. Our SQ evaluations also suggest that current approaches for expanding Brazilian sugarcane production by converting degraded pasture land to cropland can be a sustainable strategy for meeting increasing biofuel demand. However, management practices that alleviate negative impacts on soil physical and biological indicators must be prioritized within sugarcane producing areas to prevent unintentional SQ degradation over time.


Asunto(s)
Agricultura/métodos , Saccharum/crecimiento & desarrollo , Suelo/química , Algoritmos , Biocombustibles , Brasil , Análisis Costo-Beneficio , Ecosistema , Monitoreo del Ambiente , Geografía , Concentración de Iones de Hidrógeno , Modelos Estadísticos , Dinámicas no Lineales , Análisis de Componente Principal
9.
Sci Total Environ ; 563-564: 160-8, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27135579

RESUMEN

Land use changes (LUC) from pasture to sugarcane (Saccharum spp.) crop are expected to add 6.4Mha of new sugarcane land by 2021 in the Brazilian Cerrado and Atlantic Forest biomes. We assessed the effects of these LUC on the abundance and community structure of animals that inhabit soils belowground through a field survey using chronosequences of land uses comprising native vegetation, pasture, and sugarcane along a 1000-km-long transect across these two major tropical biomes in Brazil. Macrofauna community composition differed among land uses. While most groups were associated with samples taken in native vegetation, high abundance of termites and earthworms appeared associated with pasture soils. Linear mixed effects analysis showed that LUC affected total abundance (X(2)(1)=6.79, p=0.03) and taxa richness (X(2)(1)=6.08, p=0.04) of soil macrofauna. Abundance increased from 411±70individualsm(-2) in native vegetation to 1111±202individualsm(-2) in pasture, but decreased sharply to 106±24individualsm(-2) in sugarcane soils. Diversity decreased 24% from native vegetation to pasture, and 39% from pasture to sugarcane. Thus, a reduction of ~90% in soil macrofauna abundance, besides a loss of ~40% in the diversity of macrofauna groups, can be expected when sugarcane crops replace pasture in Brazilian tropical soils. In general, higher abundances of major macrofauna groups (ants, coleopterans, earthworms, and termites) were associated with higher acidity and low contents of macronutrients and organic matter in soil. This study draws attention for a significant biodiversity loss belowground due to tropical LUC in sugarcane expansion areas. Given that many groups of soil macrofauna are recognized as key mediators of ecosystem processes such as soil aggregation, nutrients cycling and soil carbon storage, our results warrant further efforts to understand the impacts of altering belowground biodiversity and composition on soil functioning and agriculture performance across LUC in the tropics.


Asunto(s)
Agricultura , Biodiversidad , Invertebrados/fisiología , Saccharum/crecimiento & desarrollo , Suelo/química , Animales , Brasil , Insectos/fisiología , Oligoquetos/fisiología
10.
Sci Total Environ ; 515-516: 30-8, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25688522

RESUMEN

Historical data of land use change (LUC) indicated that the sugarcane expansion has mainly displaced pasture areas in Central-Southern Brazil, globally the largest producer, and that those pastures were prior established over native forests in the Cerrado biome. We sampled 3 chronosequences of land use comprising native vegetation (NV), pasture (PA), and sugarcane crop (SC) in the sugarcane expansion region to assess the effects of LUC on soil carbon, nitrogen, and labile phosphorus pools. Thirty years after conversion of NV to PA, we found significant losses of original soil organic matter (SOM) from NV, while insufficient new organic matter was introduced from tropical grasses into soil to offset the losses, reflecting in a net C emission of 0.4 Mg ha(-1)yr(-1). These findings added to decreases in (15)N signal indicated that labile portions of SOM are preserved under PA. Afterwards, in the firsts five years after LUC from PA to SC, sparse variations were found in SOM levels. After more than 20 years of sugarcane crop, however, there were losses of 40 and 35% of C and N stocks, respectively, resulting in a rate of C emission of 1.3 Mg ha(-1)yr(-1) totally caused by the respiration of SOM from C4-cycle plants. In addition, conversion of pastures to sugarcane mostly increased (15)N signal, indicating an accumulation of more recalcitrant SOM under sugarcane. The microbe- and plant-available P showed site-specific responses to LUC as a function of different P-input managements, with the biological pool mostly accounting for more than 50% of the labile P in both anthropic land uses. With the projections of 6.4 Mha of land required by 2021 for sugarcane expansion in Brazil to achieve ethanol's demand, this explanatory approach to the responses of SOM to LUC will contribute for an accurate assessment of the CO2 balance of sugarcane ethanol.


Asunto(s)
Agricultura , Carbono/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Saccharum/crecimiento & desarrollo , Suelo/química , Brasil , Productos Agrícolas/crecimiento & desarrollo , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA