Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Physiol ; 194(4): 2117-2135, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38060625

RESUMEN

The gynoecium is critical for the reproduction of flowering plants as it contains the ovules and the tissues that foster pollen germination, growth, and guidance. These tissues, known as the reproductive tract (ReT), comprise the stigma, style, and transmitting tract (TT). The ReT and ovules originate from the carpel margin meristem (CMM) within the pistil. SHOOT MERISTEMLESS (STM) is a key transcription factor for meristem formation and maintenance. In all above-ground meristems, including the CMM, local STM downregulation is required for organ formation. However, how this downregulation is achieved in the CMM is unknown. Here, we have studied the role of HISTONE DEACETYLASE 19 (HDA19) in Arabidopsis (Arabidopsis thaliana) during ovule and ReT differentiation based on the observation that the hda19-3 mutant displays a reduced ovule number and fails to differentiate the TT properly. Fluorescence-activated cell sorting coupled with RNA-sequencing revealed that in the CMM of hda19-3 mutants, genes promoting organ development are downregulated while meristematic markers, including STM, are upregulated. HDA19 was essential to downregulate STM in the CMM, thereby allowing ovule formation and TT differentiation. STM is ectopically expressed in hda19-3 at intermediate stages of pistil development, and its downregulation by RNA interference alleviated the hda19-3 phenotype. Chromatin immunoprecipitation assays indicated that STM is a direct target of HDA19 during pistil development and that the transcription factor SEEDSTICK is also required to regulate STM via histone acetylation. Thus, we identified factors required for the downregulation of STM in the CMM, which is necessary for organogenesis and tissue differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Arabidopsis/fisiología , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Histona Desacetilasas/metabolismo
2.
Plant Mol Biol ; 112(3): 179-193, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171544

RESUMEN

REM (reproductive meristem) transcription factors have been proposed as regulators of plant reproductive development mainly based on their specific expression patterns in reproductive structures, but their roles are still largely unknown probably because of their redundancy. We selected three REM genes (REM13, REM34 and REM46) for functional analysis, based on their genome position and/or co-expression data.Our results suggest that these genes have a role in flowering time regulation and may modulate cell cycle progression. In addition, protein interaction experiments revealed that REM34 and REM46 interact with each other, suggesting that they might work cooperatively to regulate cell division during inflorescence meristem commitment.Previous attempts of using co-expression data as a guide for functional analysis of REMs were limited by the transcriptomic data available at the time. Our results uncover previously unknown functions of three members of the REM family of Arabidopsis thaliana and open the door to more comprehensive studies of the REM family, where the combination of co-expression analysis followed by functional studies might contribute to uncovering the biological roles of these proteins and the relationship among them.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Inflorescencia/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Meristema , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell Rep ; 38(3): 333-343, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30617542

RESUMEN

KEY MESSAGE: TFL1homologCorcanTFL1suppresses the initiation of inflorescence development and regulates the inflorescence morphology inCornus canadensis. In flowering plants, there is a wide range of variation of inflorescence morphology. Despite the ecological and evolutionary importance, efforts devoted to the evolutionary study of the genetic basis of inflorescence morphology are far fewer compared to those on flower development. Our previous study on gene expression patterns suggested a CorTFL1-CorAP1 based model for the evolution of determinate umbels, heads, and mini dichasia from elongated inflorescences in Cornus. Here, we tested the function of CorcanTFL1 in regulating inflorescence development in Cornus canadensis through Agrobacterium-mediated transformation. We showed that transgenic plants overexpressing CorcanTFL1 displayed delayed or suppressed inflorescence initiation and development and extended periods of vegetative growth. Transgenic plants within which CorcanTFL1 had been down-regulated displayed earlier emergence of inflorescence and a reduction of bract and inflorescence sizes, conversions of leaves to bracts and axillary leaf buds to small inflorescences at the uppermost node bearing the inflorescence, or phyllotaxy changes of inflorescence branches and leaves from decussate opposite to spirally alternate. These observations support an important role of CorcanTFL1 in determining flowering time and the morphological destinies of leaves and buds at the node bearing the inflorescence. The evidence is in agreement with the predicted function of CorTFL1 from the gene expression model, supporting a key role of CorTFL1 in the evolutionary divergence of inflorescence forms in Cornus.


Asunto(s)
Cornus/metabolismo , Proteínas de Plantas/metabolismo , Cornus/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inflorescencia/genética , Inflorescencia/metabolismo , Filogenia , Proteínas de Plantas/genética
4.
New Phytol ; 216(2): 519-535, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27662246

RESUMEN

TFL1-, AP1- and LFY-like genes are known to be key regulators of inflorescence development. However, it remains to be tested whether the evolutionary modifications of inflorescence morphology result from shifts in their expression patterns. We compared the spatiotemporal expression patterns of CorTFL1, CorAP1 and CorLFY in six closely related Cornus species that display four types of closed inflorescence morphology using quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization. Character mapping on the phylogeny was conducted to identify evolutionary changes and to assess the correlation between changes in gene expression and inflorescence morphology. Results demonstrated variation of gene expression patterns among species and a strong correlation between CorTFL1 expression and the branch index of the inflorescence type. Evolutionary changes in CorTFL1 and CorAP1 expression co-occurred on the phylogeny with the morphological changes underpinning inflorescence divergence. The study found a clear correlation between the expression patterns of CorTFL1 and CorAP1 and the inflorescence architecture in a natural system displaying closed inflorescences. The results suggest a role for the alteration in CorTFL1 and CorAP1 expression during the evolutionary modification of inflorescences in Cornus. We propose that a TFL1-like and AP1-like gene-based model may explain variation of closed inflorescences in Cornus and other lineages.


Asunto(s)
Evolución Biológica , Cornaceae/anatomía & histología , Cornaceae/genética , Inflorescencia/anatomía & histología , Inflorescencia/genética , Modelos Biológicos , Proteínas de Plantas/genética , Cornaceae/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Modelos Genéticos , Filogenia , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie
5.
Plant Physiol ; 171(1): 42-61, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26983993

RESUMEN

Plant meristems, like animal stem cell niches, maintain a pool of multipotent, undifferentiated cells that divide and differentiate to give rise to organs. In Arabidopsis (Arabidopsis thaliana), the carpel margin meristem is a vital meristematic structure that generates ovules from the medial domain of the gynoecium, the female floral reproductive structure. The molecular mechanisms that specify this meristematic region and regulate its organogenic potential are poorly understood. Here, we present a novel approach to analyze the transcriptional signature of the medial domain of the Arabidopsis gynoecium, highlighting the developmental stages that immediately proceed ovule initiation, the earliest stages of seed development. Using a floral synchronization system and a SHATTERPROOF2 (SHP2) domain-specific reporter, paired with FACS and RNA sequencing, we assayed the transcriptome of the gynoecial medial domain with temporal and spatial precision. This analysis reveals a set of genes that are differentially expressed within the SHP2 expression domain, including genes that have been shown previously to function during the development of medial domain-derived structures, including the ovules, thus validating our approach. Global analyses of the transcriptomic data set indicate a similarity of the pSHP2-expressing cell population to previously characterized meristematic domains, further supporting the meristematic nature of this gynoecial tissue. Our method identifies additional genes including novel isoforms, cis-natural antisense transcripts, and a previously unrecognized member of the REPRODUCTIVE MERISTEM family of transcriptional regulators that are potential novel regulators of medial domain development. This data set provides genome-wide transcriptional insight into the development of the carpel margin meristem in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Transcriptoma , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/aislamiento & purificación , Secuencia de Bases , Hidrato de Cloral , ADN sin Sentido , Flores/genética , Genoma de Planta , Hibridación in Situ , Ácidos Indolacéticos/farmacología , Proteínas de Dominio MADS/aislamiento & purificación , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microscopía Confocal , Óvulo Vegetal/citología , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/metabolismo , Isoformas de Proteínas , Protoplastos , ARN de Planta/química , ARN de Planta/aislamiento & purificación , Semillas/crecimiento & desarrollo , Alineación de Secuencia , Factores de Transcripción , Activación Transcripcional
6.
Plant Physiol ; 170(3): 1675-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26818732

RESUMEN

A decade of studies on middle cortex (MC) formation in the root endodermis of Arabidopsis (Arabidopsis thaliana) have revealed a complex regulatory network that is orchestrated by several GRAS family transcription factors, including SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE3 (SCL3). However, how their functions are regulated remains obscure. Here we show that mutations in the SEUSS (SEU) gene led to a higher frequency of MC formation. seu mutants had strongly reduced expression of SHR, SCR, and SCL3, suggesting that SEU positively regulates these genes. Our results further indicate that SEU physically associates with upstream regulatory sequences of SHR, SCR, and SCL3; and that SEU has distinct genetic interactions with these genes in the control of MC formation, with SCL3 being epistatic to SEU. Similar to SCL3, SEU was repressed by the phytohormone GA and induced by the GA biosynthesis inhibitor paclobutrazol, suggesting that SEU acts downstream of GA signaling to regulate MC formation. Consistently, we found that SEU mediates the regulation of SCL3 by GA signaling. Together, our study identifies SEU as a new critical player that integrates GA signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate MC formation in the Arabidopsis root.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/genética , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Modelos Genéticos , Mutación , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
7.
Planta ; 243(5): 1129-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26825444

RESUMEN

MAIN CONCLUSION: Two TFL1 -like genes, CorfloTFL1 and CorcanTFL1 cloned from Cornus florida and C. canadensis, function in regulating the transition to reproductive development in Arabidopsis. TERMINAL FLOWER 1 (TFL1) is known to regulate inflorescence development in Arabidopsis thaliana and to inhibit the transition from a vegetative to reproductive phase within the shoot apical meristem. Despite the importance, TFL1 homologs have been functionally characterized in only a handful eudicots. Here we report the role of TFL1 homologs of Cornus L. in asterid clade of eudicots. Two TFL1-like genes, CorfloTFL1 and CorcanTFL1, were cloned from Cornus florida (a tree) and C. canadensis (a subshrub), respectively. Both are deduced to encode proteins of 175 amino acids. The amino acid sequences of these two Cornus TFL1 homologs share a high similarity to Arabidopsis TFL1 and phylogenetically more close to TFL1 paralogous copy ATC (Arabidopsis thaliana CENTRORADIALIS homologue). Two genes are overexpressed in wild-type and tfl1 mutant plants of A. thaliana. The over-expression of each gene in wild-type Arabidopsis plants results in delaying flowering time, increase of plant height and cauline and rosette leaf numbers, excessive shoot buds, and secondary inflorescence branches. The over-expression of each gene in the tfl1 mutant rescued developmental defects, such as the early determinate inflorescence development, early flowering time, and other vegetative growth defects, to normal phenotypes of wild-type plants. These transgenic phenotypes are inherited in progenies. All data indicate that CorfloTFL1 and CorcanTFL1 have conserved the ancestral function of TFL1 and CEN regulating flowering time and inflorescence determinacy.


Asunto(s)
Cornus/fisiología , Flores/fisiología , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Cornus/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Mutación , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
8.
New Phytol ; 210(3): 1107-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26824345

RESUMEN

Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus.


Asunto(s)
Endospermo/embriología , Hibridación Genética , Mimulus/embriología , Mimulus/genética , Cruzamientos Genéticos , Frutas/crecimiento & desarrollo , Germinación , Fenotipo , Tubo Polínico/crecimiento & desarrollo , Autofecundación , Coloración y Etiquetado , Simpatría
9.
Dev Biol ; 386(1): 12-24, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24355747

RESUMEN

Reproductive success of angiosperms relies on the precise development of the gynoecium and the anther, because their primary function is to bear and to nurture the embryo sac/female gametophyte and pollen, in which the egg and sperm cells, respectively, are generated. It has been known that the GRF-INTERACTING FACTOR (GIF) transcription co-activator family of Arabidopsis thaliana (Arabidopsis) consists of three members and acts as a positive regulator of cell proliferation. Here, we demonstrate that GIF proteins also play an essential role in development of reproductive organs and generation of the gamete cells. The gif1 gif2 gif3 triple mutant, but not the single or double mutants, failed to establish normal carpel margin meristem (CMM) and its derivative tissues, such as the ovule and the septum, resulting in a split gynoecium and no observable embryo sac. The gif triple mutant also displayed severe structural and functional defects in the anther, producing neither microsporangium nor pollen grains. Therefore, we propose that the GIF family of Arabidopsis is a novel and essential component required for the cell specification maintenance during reproductive organ development and, ultimately, for the reproductive competence.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Transactivadores/genética , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/crecimiento & desarrollo , Microscopía Electrónica de Rastreo , Microscopía de Interferencia , Familia de Multigenes , Mutación , Óvulo Vegetal/crecimiento & desarrollo , Fenotipo , Infertilidad Vegetal , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo
10.
Plant Physiol ; 166(4): 1998-2012, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25332506

RESUMEN

Although it is generally accepted that auxin is important for the patterning of the female reproductive organ, the gynoecium, the flow as well as the temporal and spatial actions of auxin have been difficult to show during early gynoecial development. The primordium of the Arabidopsis (Arabidopsis thaliana) gynoecium is composed of two congenitally fused, laterally positioned carpel primordia bisected by two medially positioned meristematic regions that give rise to apical and internal tissues, including the ovules. This organization makes the gynoecium one of the most complex plant structures, and as such, the regulation of its development has remained largely elusive. By determining the spatiotemporal expression of auxin response reporters and localization of PINFORMED (PIN) auxin efflux carriers, we have been able to create a map of the auxin flow during the earliest stages of gynoecial primordium initiation and outgrowth. We show that transient disruption of polar auxin transport (PAT) results in ectopic auxin responses, broadened expression domains of medial tissue markers, and disturbed lateral preprocambium initiation. Based on these results, we propose a new model of auxin-mediated gynoecial patterning, suggesting that valve outgrowth depends on PIN1-mediated lateral auxin maxima as well as subsequent internal auxin drainage and provascular formation, whereas the growth of the medial domains is less dependent on correct PAT. In addition, PAT is required to prevent the lateral domains, at least in the apical portion of the gynoecial primordium, from obtaining medial fates.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Reproducción
11.
J Exp Bot ; 64(9): 2619-27, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23585670

RESUMEN

Recent research is beginning to reveal how intricate networks of hormones and transcription factors coordinate the complex patterning of the gynoecium, the female reproductive structure of flowering plants. This review summarizes recent advances in understanding of how auxin biosynthesis, transport, and responses together generate specific gynoecial domains. This review also highlights areas where future research endeavours are likely to provide additional insight into the homeostatic molecular mechanisms by which auxin regulates gynoecium development.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Flores/crecimiento & desarrollo , Flores/metabolismo , Homeostasis
12.
Ann Bot ; 112(8): 1629-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24052556

RESUMEN

BACKGROUND AND AIMS: LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. METHODS: Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. KEY RESULTS: cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. CONCLUSIONS: The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.


Asunto(s)
Cornus/anatomía & histología , Cornus/genética , Regulación de la Expresión Génica de las Plantas , Inflorescencia/anatomía & histología , Inflorescencia/genética , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Secuencia de Bases , Cornus/crecimiento & desarrollo , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas , Hibridación in Situ , Inflorescencia/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
13.
New Phytol ; 196(2): 631-643, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22897242

RESUMEN

Despite increasing interest in the molecular mechanisms of floral diversity, few studies have investigated the developmental and genetic bases of petaloid bracts. This study examined morphological patterns of bract initiation and expression patterns of B-class MADS-box genes in bracts of several Cornus species. We suggest that petaloid bracts in this genus may not share a single evolutionary origin. Developmental pathways of bracts and spatiotemporal expression of B-class genes in bracts and flowers were examined for four closely related dogwood species. Divergent morphological progressions and gene expression patterns were found in the two sister lineages with petaloid bracts, represented by Cornus florida and Cornus canadensis. Phylogeny-based analysis identified developmental and gene expression changes that are correlated with the evolution of petaloid bracts in C. florida and C. canadensis. Our data support the existence of independent evolutionary origins of petaloid bracts in C. canadensis and C. florida. Additionally, we suggest that functional transference within B-class gene families may have contributed to the origin of bract petaloidy in C. florida. However, the underlying mechanisms of petaloid bract development likely differ between C. florida and C. canadensis. In the future this hypothesis can be tested by functional analyses of Cornus B-class genes.


Asunto(s)
Evolución Biológica , Cornaceae/crecimiento & desarrollo , Cornaceae/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Hojas de la Planta/crecimiento & desarrollo , Forma de la Célula , Cornaceae/anatomía & histología , Cornaceae/ultraestructura , Flores/citología , Flores/crecimiento & desarrollo , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas/genética , Inflorescencia/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Filogenia , Epidermis de la Planta/citología , Epidermis de la Planta/ultraestructura , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año , Factores de Tiempo
14.
Dev Biol ; 346(2): 181-95, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20654611

RESUMEN

In flowering plants the gynoecium is the female reproductive structure and the site of oogenesis, fertilization, and maturation of the embryo and the seed. Proper development of the gynoecium requires that the early gynoecial primordium be partitioned into distinct spatial domains with divergent fates. Regulated transport of the phytohormone auxin previously has been shown to play a role in the patterning of spatial domains along the apical-basal axis of the gynoecium. Here we establish a role for auxin transport in patterning along the medio-lateral axis of the gynoecial ovary. We demonstrate that auxin transport is required for the development of the medial ovary domain that contains the carpel margin meristem, a vital female reproductive structure. Disruptions in auxin transport enhance the medial domain defects observed in aintegumenta and revoluta mutant genotypes. Aintegumenta and revoluta are likely to function in parallel and partially overlapping pathways required for medial domain development. Our data indicate that different ovary domains are differentially sensitive to the reduction of polar auxin transport and the loss of aintegumenta and revoluta activity. We suggest that an auxin-mediated positional cue is important for the differential specification of the medial and lateral ovary domains.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
New Phytol ; 191(3): 850-869, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21488878

RESUMEN

• Inflorescence architecture is important to angiosperm reproduction, but our knowledge of the developmental basis underlying the evolution of inflorescence architectures is limited. Using a phylogeny-based comparative analysis of developmental pathways, we tested the long-standing hypothesis that umbel evolved from elongated inflorescences by suppression of inflorescence branches, while head evolved from umbels by suppression of pedicels. • The developmental pathways of six species of Cornus producing different inflorescence types were characterized by scanning electron microscopy (SEM) and histological analysis. Critical developmental events were traced over the molecular phylogeny to identify evolutionary changes leading to the formation of umbels and heads using methods accounting for evolutionary time and phylogenetic uncertainty. • We defined 24 developmental events describing the developmental progression of the different inflorescence types. The evolutionary transition from paniculate cymes to umbels and heads required alterations of seven developmental events occurring at different evolutionary times. • Our results indicate that heads and umbels evolved independently in Cornus from elongated forms via an umbellate dichasium ancestor and this process involved several independent changes. Our findings shed novel insights into head and umbel evolution concealed by outer morphology. Our work illustrates the importance of combining developmental and phylogenetic data to better define morphological evolutionary processes.


Asunto(s)
Evolución Biológica , Cornus/crecimiento & desarrollo , Inflorescencia/crecimiento & desarrollo , Organogénesis/genética , Cornus/genética , Cornus/ultraestructura , Inflorescencia/genética , Inflorescencia/ultraestructura , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Filogenia , Reproducción/fisiología
16.
Plant Physiol ; 152(2): 821-36, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007451

RESUMEN

Multimeric protein complexes are required during development to regulate transcription and orchestrate cellular proliferation and differentiation. The Arabidopsis (Arabidopsis thaliana) SEUSS (SEU) gene encodes a transcriptional adaptor that shares sequence similarity with metazoan Lim domain-binding transcriptional adaptors. In Arabidopsis, SEU forms a physical complex with the LEUNIG transcriptional coregulator. This complex regulates a number of diverse developmental events, including proper specification of floral organ identity and number and the development of female reproductive tissues derived from the carpel margin meristem. In addition to SEU, there are three Arabidopsis SEUSS-LIKE (SLK) genes that encode putative transcriptional adaptors. To determine the functions of the SLK genes and to investigate the degree of functional redundancy between SEU and SLK genes, we characterized available slk mutant lines in Arabidopsis. Here, we show that mutations in any single SLK gene failed to condition an obvious morphological abnormality. However, by generating higher order mutant plants, we uncovered a degree of redundancy between the SLK genes and between SLK genes and SEU. We report a novel role for SEU and the SLK genes during embryonic development and show that the concomitant loss of both SEU and SLK2 activities conditions severe embryonic and seedling defects characterized by a loss of the shoot apical meristem. Furthermore, we demonstrate that SLK gene function is required for proper development of vital female reproductive tissues derived from the carpel margin. We propose a model that posits that SEU and SLK genes support organ development from meristematic regions through two different pathways: one that facilitates auxin response and thus organ initiation and a second that sustains meristematic potential through the maintenance of SHOOTMERISTEM-LESS and PHABULOSA expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética
17.
BMC Plant Biol ; 10: 198, 2010 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-20836864

RESUMEN

BACKGROUND: The Arabidopsis SEUSS (SEU) gene encodes a transcriptional adaptor protein that is required for a diverse set of developmental events, including floral organ identity specification, as well as gynoecium, ovule and embryo development. In order to better understand the molecular mechanisms of SEUSS action we undertook a genetic modifier screen to identify seuss-modifier (sum) mutations. RESULTS: Screening of M2 lines representing approximately 5,000 M1 individuals identified mutations that enhance the seuss mutant phenotypic disruptions in ovules and gynoecia; here we describe the phenotype of the sum63 mutant and enhanced disruptions of ovule and gynoecial development in the seu sum63 double mutant. Mapping and genetic complementation tests indicate that sum63 is allelic to CYP85A2 (AT3G30180) a cytochrome p450 enzyme that catalyzes the final steps in the synthesis of the phytohormone brassinolide. CONCLUSIONS: Our identification of mutations in CYP85A2 as enhancers of the seuss mutant phenotype suggests a previously unrecognized role for brassinolide synthesis in gynoecial and ovule outer integument development. The work also suggests that seuss mutants may be more sensitive to the loss or reduction of brassinolide synthesis than are wild type plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Colestanoles/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Óvulo Vegetal/crecimiento & desarrollo , Esteroides Heterocíclicos/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides , Mapeo Cromosómico , Sistema Enzimático del Citocromo P-450/metabolismo , ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Genotipo , Mutagénesis Insercional , Mutación , Reguladores del Crecimiento de las Plantas/biosíntesis
18.
Front Plant Sci ; 11: 132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161609

RESUMEN

The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critical for proper endosperm and seed development. We use a transcriptional time series analysis to identify genes that are associated with key shifts in seed development, including genes associated with secondary cell wall synthesis, mitotic cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed maturation. We relate these genes to morphological changes in Mimulus seeds. We also identify four endosperm-expressed transcripts that display imprinted (paternal) expression bias. The imprinted status of these four genes is conserved in other flowering plants, suggesting that they are functionally important in endosperm development. Our study explores gene regulatory dynamics in a species with ab initio cellular endosperm development, broadening the taxonomic focus of the literature on gene expression in seeds. Moreover, it is the first to validate genes with imprinted endosperm expression in Mimulus guttatus, and will inform future studies on the genetic causes of seed failure in this model system.

19.
Front Plant Sci ; 8: 1712, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085379

RESUMEN

In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve.

20.
Methods Mol Biol ; 1457: 1-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557569

RESUMEN

The use of chloral hydrate optical clearing paired with differential interference contrast microscopy allows the analysis of internal structures of developing plant organs without the need for paraffin embedding and sectioning. This approach is appropriate for the analysis of the developing gynoecium or seedpod of the flowering plant Arabidopsis thaliana and many other types of fixed plant material. Early stages of ovule development are observable with this approach.


Asunto(s)
Arabidopsis/citología , Arabidopsis/fisiología , Microscopía de Interferencia , Óvulo Vegetal/citología , Hidrato de Cloral , Técnicas Citológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA