Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Anal Biochem ; 691: 115533, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38642818

RESUMEN

For irreversible denaturation transitions such as those exhibited by monoclonal antibodies, differential scanning calorimetry provides the denaturation temperature, Tm, the rate of denaturation at Tm, and the activation energy at Tm. These three quantities are essential but not sufficient for an accurate extrapolation of the rate of denaturation to temperatures of 25 °C and below. We have observed that the activation energy is not constant but temperature dependent due to the existence of an activation heat capacity, Cp,a. It is shown in this paper that a model that incorporates Cp,a is able to account for previous observations like, for example, that increasing the Tm does not always improve the stability at low temperatures; that some antibodies exhibit lower stabilities at 5 °C than at 25 °C; or that low temperature stabilities do not follow the rank order derived from Tm values. Most importantly, the activation heat capacity model is able to reproduce time dependent stabilities measured by size exclusion chromatography at low temperatures.


Asunto(s)
Anticuerpos Monoclonales , Rastreo Diferencial de Calorimetría , Desnaturalización Proteica , Anticuerpos Monoclonales/química , Frío , Temperatura , Estabilidad Proteica , Termodinámica
2.
J Biol Chem ; 298(4): 101763, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202650

RESUMEN

Voltage-gated sodium channels, NaVs, are responsible for the rapid rise of action potentials in excitable tissues. NaV channel mutations have been implicated in several human genetic diseases, such as hypokalemic periodic paralysis, myotonia, and long-QT and Brugada syndromes. Here, we generated high-affinity anti-NaV nanobodies (Nbs), Nb17 and Nb82, that recognize the NaV1.4 (skeletal muscle) and NaV1.5 (cardiac muscle) channel isoforms. These Nbs were raised in llama (Lama glama) and selected from a phage display library for high affinity to the C-terminal (CT) region of NaV1.4. The Nbs were expressed in Escherichia coli, purified, and biophysically characterized. Development of high-affinity Nbs specifically targeting a given human NaV isoform has been challenging because they usually show undesired crossreactivity for different NaV isoforms. Our results show, however, that Nb17 and Nb82 recognize the CTNaV1.4 or CTNaV1.5 over other CTNav isoforms. Kinetic experiments by biolayer interferometry determined that Nb17 and Nb82 bind to the CTNaV1.4 and CTNaV1.5 with high affinity (KD ∼ 40-60 nM). In addition, as proof of concept, we show that Nb82 could detect NaV1.4 and NaV1.5 channels in mammalian cells and tissues by Western blot. Furthermore, human embryonic kidney cells expressing holo NaV1.5 channels demonstrated a robust FRET-binding efficiency for Nb17 and Nb82. Our work lays the foundation for developing Nbs as anti-NaV reagents to capture NaVs from cell lysates and as molecular visualization agents for NaVs.


Asunto(s)
Anticuerpos de Dominio Único , Canales de Sodio Activados por Voltaje , Animales , Células Cultivadas , Escherichia coli/genética , Humanos , Síndrome de QT Prolongado/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
3.
Anal Biochem ; 626: 114240, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33964250

RESUMEN

There have been numerous studies of the temperature denaturation of monoclonal antibodies (mAbs) using differential scanning calorimetry (DSC). In general, mAbs are characterized by complex temperature denaturation transitions in which the various domains (CH2, CH3, Fab) give rise to different peaks in the heat capacity function. The complexity and overall irreversibility of the temperature denaturation transition is well known and has limited the number of publications with an in-depth analysis of the data. Here we report that the temperature denaturation of the CH2 domain is reversible and only becomes irreversible after denaturation of the Fab domain, which is intrinsically irreversible. For these studies we have used the HIV neutralizing monoclonal antibody 17b. To account for the experimental heat capacity function, a mixed denaturation model that combines multiple reversible and irreversible transitions has been developed. This model accounts well for the DSC data and for the pH dependence of the heat capacity function of 17b and other monoclonal antibodies for which data is available in the literature. It is expected that a more detailed analysis of the stability of monoclonal antibodies will contribute to the development of better approaches to understand and optimize the structural viability of these therapeutic macromolecules.


Asunto(s)
Anticuerpos Monoclonales/química , Rastreo Diferencial de Calorimetría/métodos , Desnaturalización Proteica , Temperatura , Concentración de Iones de Hidrógeno , Termodinámica
4.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021898

RESUMEN

The entry of human immunodeficiency virus into host cells is mediated by the envelope glycoprotein (Env) trimeric spike, which consists of three exterior gp120 subunits and three transmembrane gp41 subunits. The trimeric Env undergoes extensive conformational rearrangement upon interaction with the CD4 receptor, transitioning from the unliganded, "closed" State 1 to more-open downstream State 2 and State 3 conformations. Changes in "restraining" amino acid residues, such as leucine 193 and isoleucine 423, destabilize State 1 Env, which then assumes entry-competent, downstream conformations. The introduction of an artificial disulfide bond linking the gp120 and gp41 subunits (SOS) in combination with the I559P (IP) change has allowed structural characterization of soluble gp140 (sgp140) trimers. The conformation of these SOSIP-stabilized sgp140 trimers has been suggested to represent the closed native State 1 conformation. Here we compare the impact on the membrane Env conformation of the SOSIP changes with that of the well-characterized changes (L193R and I423A) that shift Env to downstream States 2 and 3. The results presented here suggest that the SOSIP changes stabilize Env in a conformation that differs from State 1 but also from the downstream Env conformations stabilized by L193R or I423A.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer is triggered by receptor binding to mediate the entry of the virus into cells. Most structural studies of Env trimers have utilized truncated soluble gp140 Envs stabilized with the I559P and SOS changes. Here we present evidence indicating that these stabilizing changes have a profound impact on the conformation of Env, moving Env away from the native pretriggered Env conformation. Our studies underscore the need to acquire structural information on the pretriggered Env conformation, which is recognized by most broadly reactive neutralizing antibodies.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Antígenos CD4/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , Infecciones por VIH/virología , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Multimerización de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Nat Chem Biol ; 13(10): 1115-1122, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825711

RESUMEN

The HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.8-Å resolution of an HIV-1-Env trimer with BMS-378806 and a derivative BMS-626529 for which a prodrug version is currently in Phase III clinical trials. Both lead candidates recognized an induced binding pocket that was mostly excluded from solvent and comprised of Env elements from a conserved helix and the ß20-21 hairpin. In both structures, the ß20-21 region assumed a conformation distinct from prefusion-closed and CD4-bound states. Together with biophysical and antigenicity characterizations, the structures illuminate the allosteric and competitive mechanisms by which these small-molecule leads inhibit CD4-induced structural changes in Env.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Piperazinas/química , Bibliotecas de Moléculas Pequeñas/química , Triazoles/química , Internalización del Virus/efectos de los fármacos , Cristalografía por Rayos X , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Modelos Moleculares , Piperazinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología
6.
Mol Microbiol ; 106(3): 439-451, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28836704

RESUMEN

Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.


Asunto(s)
Lipoilación/genética , Lipoilación/fisiología , Chlamydia/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Nucleotidiltransferasas , Oxidación-Reducción , Péptido Sintasas/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
7.
Anal Biochem ; 558: 50-52, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30096280

RESUMEN

It has been shown that isothermal calorimetry is able to provide critical information regarding the kinetics of denaturation/aggregation of monoclonal antibodies at temperatures below Tm. Those measurements, however, required sophisticated specialized instrumentation. Here, we demonstrate that similar measurements can be performed using widely available conventional differential scanning calorimeters (DSC) when operated in isothermal scan mode. The denaturation/aggregation kinetics of the anti-HIV monoclonal antibody VRC07-523LS was measured by isothermal DSC at ten degrees below Tm. It is shown that a readily available instrument provides similar kinetic information and can become an important tool for determining the long term stability of biologics.


Asunto(s)
Anticuerpos Monoclonales/análisis , Rastreo Diferencial de Calorimetría/instrumentación , Rastreo Diferencial de Calorimetría/métodos , Anticuerpos Monoclonales/química , Calorimetría/métodos , Cinética , Desnaturalización Proteica , Temperatura
8.
Anal Biochem ; 554: 61-69, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29750942

RESUMEN

Different factors affect the long term stability of monoclonal antibodies, among them denaturation or partial denaturation that is often followed by aggregation. Isothermal calorimetry is capable of quantifying the kinetics of denaturation/aggregation of an antibody by measuring the heat that is released or absorbed by the process over a period of days or weeks, at temperatures below its denaturation temperature, Tm. The denaturation/aggregation kinetics of the anti-HIV monoclonal antibody VRC07-523LS was measured by isothermal calorimetry at different concentrations in four different formulation buffers. The measurements were performed at ten degrees below Tm, as determined by differential scanning calorimetry. The formation of aggregates was also followed by size exclusion chromatography at 5 °C, 25 °C and 40 °C over a period of 8-36 weeks. It was observed that the rates measured by isothermal calorimetry correlate quantitatively with those measured by size exclusion chromatography. Since isothermal calorimetry experiments are performed over a period of ten days, it can become a valuable tool for a fast prediction of the best formulations.


Asunto(s)
Anticuerpos Anti-VIH/química , VIH-1/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/química , Apraxia Ideomotora , Calorimetría/métodos , Rastreo Diferencial de Calorimetría/métodos , Calor , Humanos , Agregado de Proteínas , Desnaturalización Proteica , Estabilidad Proteica
9.
Proc Natl Acad Sci U S A ; 112(20): E2687-94, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941367

RESUMEN

HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos CD4/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/transmisión , VIH-1/inmunología , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/inmunología , Citometría de Flujo , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
10.
Biochim Biophys Acta ; 1860(5): 975-980, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26679422

RESUMEN

BACKGROUND: Differential scanning calorimetry is a powerful method that provides a complete thermodynamic characterization of the stability of a protein as a function of temperature. There are, however, circumstances that preclude a complete analysis of DSC data. The most common ones are irreversible denaturation transitions or transitions that take place at temperatures that are beyond the temperature limit of the instrument. Even for a protein that undergoes reversible thermal denaturation, the extrapolation of the thermodynamic data to lower temperatures, usually 25°C, may become unreliable due to difficulties in the determination of ΔCp. METHODS: The combination of differential scanning calorimetry and isothermal chemical denaturation allows reliable thermodynamic analysis of protein stability under less than ideal conditions. RESULTS AND CONCLUSIONS: This paper demonstrates how DSC can be used in combination with chemical denaturation to address three different scenarios: 1) estimation of an accurate ΔCp value for a reversible denaturation using as a test system the envelope HIV-1 glycoprotein gp120; 2) determination of the Gibbs energy of stability in the region in which thermal denaturation is irreversible using HEW lysozyme at different pH values; and, 3) determination of Gibbs energy of stability for a thermostable protein, thermolysin.


Asunto(s)
Proteínas Bacterianas/química , Proteína gp120 de Envoltorio del VIH/química , Muramidasa/química , Termolisina/química , Animales , Bacillus/química , Rastreo Diferencial de Calorimetría , Pollos , VIH-1/química , Concentración de Iones de Hidrógeno , Cinética , Desnaturalización Proteica , Pliegue de Proteína , Temperatura , Termodinámica
11.
Proteins ; 85(11): 2009-2016, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28722205

RESUMEN

The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day-1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs.


Asunto(s)
Calorimetría/métodos , Desnaturalización Proteica , Estabilidad Proteica , Animales , Pollos , Muramidasa/análisis , Muramidasa/química , Muramidasa/metabolismo , Muramidasa/efectos de la radiación , Agregado de Proteínas/fisiología , Termodinámica
12.
J Virol ; 89(10): 5318-29, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25740988

RESUMEN

UNLABELLED: Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. IMPORTANCE: The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions.


Asunto(s)
VIH-1/inmunología , VIH-1/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Sustitución de Aminoácidos , Anticuerpos Anti-VIH , Antígenos VIH/química , Antígenos VIH/genética , Antígenos VIH/ultraestructura , VIH-1/genética , Humanos , Microscopía Electrónica de Transmisión , Modelos Moleculares , Imitación Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
13.
Anal Biochem ; 513: 1-6, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27567994

RESUMEN

The enthalpic and entropic contributions to the binding affinity of drug candidates have been acknowledged to be important determinants of the quality of a drug molecule. These quantities, usually summarized in the thermodynamic signature, provide a rapid assessment of the forces that drive the binding of a ligand. Having access to the thermodynamic signature in the early stages of the drug discovery process will provide critical information towards the selection of the best drug candidates for development. In this paper, the Enthalpy Screen technique is presented. The enthalpy screen allows fast and accurate determination of the binding enthalpy for hundreds of ligands. As such, it appears to be ideally suited to aid in the ranking of the hundreds of hits that are usually identified after standard high throughput screening.


Asunto(s)
Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , VIH-1/enzimología , Termodinámica , Evaluación Preclínica de Medicamentos/métodos
14.
J Virol ; 88(12): 6542-55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696475

RESUMEN

UNLABELLED: Approaches to prevent human immunodeficiency virus (HIV-1) transmission are urgently needed. Difficulties in eliciting antibodies that bind conserved epitopes exposed on the unliganded conformation of the HIV-1 envelope glycoprotein (Env) trimer represent barriers to vaccine development. During HIV-1 entry, binding of the gp120 Env to the initial receptor, CD4, triggers conformational changes in Env that result in the formation and exposure of the highly conserved gp120 site for interaction with the coreceptors, CCR5 and CXCR4. The DMJ compounds (+)-DMJ-I-228 and (+)-DMJ-II-121 bind gp120 within the conserved Phe 43 cavity near the CD4-binding site, block CD4 binding, and inhibit HIV-1 infection. Here we show that the DMJ compounds sensitize primary HIV-1, including transmitted/founder viruses, to neutralization by monoclonal antibodies directed against CD4-induced (CD4i) epitopes and the V3 region, two gp120 elements involved in coreceptor binding. Importantly, the DMJ compounds rendered primary HIV-1 sensitive to neutralization by antisera elicited by immunization of rabbits with HIV-1 gp120 cores engineered to assume the CD4-bound state. Thus, small molecules like the DMJ compounds may be useful as microbicides to inhibit HIV-1 infection directly and to sensitize primary HIV-1 to neutralization by readily elicited antibodies. IMPORTANCE: Preventing HIV-1 transmission is a priority for global health. Eliciting antibodies that can neutralize many different strains of HIV-1 is difficult, creating problems for the development of a vaccine. We found that certain small-molecule compounds can sensitize HIV-1 to particular antibodies. These antibodies can be elicited in rabbits. These results suggest an approach to prevent HIV-1 sexual transmission in which a virus-sensitizing microbicide is combined with a vaccine.


Asunto(s)
Vacunas contra el SIDA/inmunología , Antivirales/farmacología , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , Vacunas contra el SIDA/administración & dosificación , Animales , Antígenos CD4/genética , Línea Celular , Femenino , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/genética , VIH-1/inmunología , Humanos , Pruebas de Neutralización , Conejos
15.
Acc Chem Res ; 47(4): 1228-37, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24502450

RESUMEN

This Account provides an overview of a multidisciplinary consortium focused on structure-based strategies to devise small molecule antagonists of HIV-1 entry into human T-cells, which if successful would hold considerable promise for the development of prophylactic modalities to prevent HIV transmission and thereby alter the course of the AIDS pandemic. Entry of the human immunodeficiency virus (HIV) into target T-cells entails an interaction between CD4 on the host T-cell and gp120, a component of the trimeric envelope glycoprotein spike on the virion surface. The resultant interaction initiates a series of conformational changes within the envelope spike that permits binding to a chemokine receptor, formation of the gp41 fusion complex, and cell entry. A hydrophobic cavity at the CD4-gp120 interface, defined by X-ray crystallography, provided an initial site for small molecule antagonist design. This site however has evolved to facilitate viral entry. As such, the binding of prospective small molecule inhibitors within this gp120 cavity can inadvertently trigger an allosteric entry signal. Structural characterization of the CD4-gp120 interface, which provided the foundation for small molecule structure-based inhibitor design, will be presented first. An integrated approach combining biochemical, virological, structural, computational, and synthetic studies, along with a detailed analysis of ligand binding energetics, revealed that modestly active small molecule inhibitors of HIV entry can also promote viral entry into cells lacking the CD4 receptor protein; these competitive inhibitors were termed small molecule CD4 mimetics. Related congeners were subsequently identified with both improved binding affinity and more potent viral entry inhibition. Further assessment of the affinity-enhanced small molecule CD4 mimetics demonstrated that premature initiation of conformational change within the viral envelope spike, prior to cell encounter, can lead to irreversible deactivation of viral entry machinery. Related congeners, which bind the same gp120 site, possess different propensities to elicit the allosteric response that underlies the undesired enhancement of CD4-independent viral entry. Subsequently, key hotspots in the CD4-gp120 interface were categorized using mutagenesis and isothermal titration calorimetry according to the capacity to increase binding affinity without triggering the allosteric signal. This analysis, combined with cocrystal structures of small molecule viral entry agonists with gp120, led to the development of fully functional antagonists of HIV-1 entry. Additional structure-based design exploiting two hotspots followed by synthesis has now yielded low micromolar inhibitors of viral entry.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Antígenos CD4/metabolismo , VIH-1/efectos de los fármacos , Antígenos CD4/química , Cristalografía por Rayos X , Diseño de Fármacos , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Imitación Molecular , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
16.
Anal Biochem ; 488: 45-50, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26239214

RESUMEN

Protein aggregation is a major issue affecting the long-term stability of protein preparations. Proteins exist in equilibrium between the native and denatured or partially denatured conformations. Often denatured or partially denatured conformations are prone to aggregate because they expose to solvent the hydrophobic core of the protein. The aggregation of denatured protein gradually shifts the protein equilibrium toward increasing amounts of denatured and ultimately aggregated protein. Recognizing and quantitating the presence of denatured protein and its aggregation at the earliest possible time will bring enormous benefits to the identification and selection of optimal solvent conditions or the engineering of proteins with the best stability/aggregation profile. In this article, a new approach that allows simultaneous determination of structural stability and the amount of denatured and aggregated protein is presented. This approach is based on the analysis of the concentration dependence of the Gibbs energy (ΔG) of protein stability. It is shown that three important quantities can be evaluated simultaneously: (i) the population of denatured protein, (ii) the population of aggregated protein, and (iii) the fraction of denatured protein that is aggregated.


Asunto(s)
Antineoplásicos/química , Anhidrasa Carbónica II/química , Cetuximab/química , Modelos Moleculares , Agregado de Proteínas , Trastuzumab/química , Animales , Arginina/química , Bovinos , Estabilidad de Medicamentos , Estabilidad de Enzimas , Calor/efectos adversos , Indicadores y Reactivos/química , Concentración Osmolar , Agregación Plaquetaria , Conformación Proteica , Desnaturalización Proteica , Estabilidad Proteica , Solubilidad , Termodinámica , Urea/química
17.
Anal Biochem ; 473: 41-5, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25481736

RESUMEN

The determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins. Isothermal chemical denaturation has been shown to be a valuable biophysical method to determine, in a direct and label-free fashion, the binding of ligands to soluble proteins. In this study, the application of isothermal chemical denaturation was applied to an integral membrane protein, the A2a G-protein coupled receptor. Binding affinities for a set of 19 small molecule agonists/antagonists of the A2a receptor were determined and found to be in agreement with data from surface plasmon resonance and radioligand binding assays previously reported in the literature. Therefore, isothermal chemical denaturation expands the available toolkit of biophysical techniques to characterize and study ligand binding to integral membrane proteins, specifically G-protein coupled receptors in vitro.


Asunto(s)
Biofisica/métodos , Desnaturalización Proteica/efectos de los fármacos , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Temperatura , Agonistas del Receptor de Adenosina A2/metabolismo , Antagonistas del Receptor de Adenosina A2/metabolismo , Guanidina/farmacología , Ligandos , Unión Proteica
18.
Bioorg Med Chem ; 23(21): 7095-109, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26474665

RESUMEN

Small-molecule mimetics of the ß-hairpin flap of HIV-1 protease (HIV-1 PR) were designed based on a 1,4-benzodiazepine scaffold as a strategy to interfere with the flap-flap protein-protein interaction, which functions as a gated mechanism to control access to the active site. Michaelis-Menten kinetics suggested our small-molecules are competitive inhibitors, which indicates the mode of inhibition is through binding the active site or sterically blocking access to the active site and preventing flap closure, as designed. More generally, a new bioactive scaffold for HIV-1PR inhibition has been discovered, with the most potent compound inhibiting the protease with a modest K(i) of 11 µM.


Asunto(s)
Inhibidores de la Proteasa del VIH/síntesis química , Proteasa del VIH/química , Bibliotecas de Moléculas Pequeñas/química , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacología , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/enzimología , VIH-1/fisiología , Humanos , Concentración 50 Inhibidora , Cinética , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
19.
Retrovirology ; 11: 4, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24422669

RESUMEN

BACKGROUND: HIV-1 Vif promotes the degradation of host anti-retroviral factor family, APOBEC3 proteins via the recruitment of a multi-subunit E3 ubiquitin ligase complex. The complex is composed of a scaffold protein, Cullin 5 (Cul5), RING-box protein (Rbx), a SOCS box binding protein complex, Elongins B/C (Elo B/C), as well as newly identified host co-factor, core binding factor beta (CBF-ß). Cul5 has previously been shown to bind amino acids within an HCCH domain as well as a PPLP motif at the C-terminus of Vif; however, it is unclear whether Cul5 binding requires additional regions of the Vif polypeptide. RESULTS: Here, we provide evidence that an amino terminal region of full length Vif is necessary for the Vif-Cul5 interaction. Single alanine replacement of select amino acids spanning residues 25-30 (25VXHXMY30) reduced the ability for Vif to bind Cul5, but not CBF-ß or Elo B/C in pull-down experiments. In addition, recombinant Vif mutants had a reduced binding affinity for Cul5 compared to wild-type as measured by isothermal titration calorimetry. N-terminal mutants that demonstrated reduced Cul5 binding were also unable to degrade APOBEC3G as well as APOBEC3F and were unable to restore HIV infectivity, in the presence of APOBEC3G. Although the Vif N-terminal amino acids were necessary for Cul5 interaction, the mutation of each residue to alanine induced a change in the secondary structure of the Vif-CBF-ß-Elo B/C complex as suggested by results from circular dichroism spectroscopy and size-exclusion chromatography experiments. Surprisingly, the replacement of His108 to alanine also contributed to the Vif structure. Thus, it is unclear whether the amino acids contribute to a direct interaction with Cul5 or whether the amino acids are responsible for the structural organization of the Vif protein that promotes Cul5 binding. CONCLUSIONS: Taken together, we propose a novel Vif N-terminal motif that is responsible for Vif recruitment of Cul5. Motifs in Vif that are absent from cellular proteins represent attractive targets for future HIV pharmaceutical design.


Asunto(s)
Proteínas Cullin/metabolismo , Citidina Desaminasa/antagonistas & inhibidores , Citosina Desaminasa/antagonistas & inhibidores , VIH-1/inmunología , VIH-1/fisiología , Evasión Inmune , Desaminasa APOBEC-3G , Citidina Desaminasa/metabolismo , Citosina Desaminasa/metabolismo , Humanos , Mapeo de Interacción de Proteínas , Proteolisis , Productos del Gen vif del Virus de la Inmunodeficiencia Humana
20.
Bioorg Med Chem Lett ; 24(7): 1698-701, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24631188

RESUMEN

The plasmepsins are specific aspartic proteases of the malaria parasite and a potential target for developing new antimalarial agents. Our previously reported peptidomimetic plasmepsin inhibitor with modified 2-aminoethylamino substituent, KNI-10740, was tested against chloroquine sensitive Plasmodium falciparum, D6, to be highly potent, however, the inhibitor exhibited about 5 times less activity against multi-drug resistant parasite (TM91C235). We hypothesized the potency reduction resulted from structural similarity between 2-aminoethylamino substituent of KNI-10740 and chloroquine. Then, we modified the moiety and finally identified compound 15d (KNI-10823), that could avoid drug-resistant mechanism of TM91C235 strain.


Asunto(s)
Antimaláricos/farmacología , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Cloroquina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Ácido Aspártico Endopeptidasas/metabolismo , Cloroquina/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA