Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Nature ; 606(7913): 358-367, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477154

RESUMEN

The composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding the extent to which, and how, host genetics contributes to this variation is essential yet has proved to be difficult, as few associations have been replicated, particularly in humans2. Here we study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and the abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3 kb deletion in the gene encoding N-acetyl-galactosaminyl-transferase that underpins the ABO blood group in humans. We show that this deletion is a ≥3.5-million-year-old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut, and thereby reduces the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of the host genotype on the abundance of specific bacteria in the intestine combined with insights into the molecular mechanisms that underpin this association. Our data pave the way towards identifying the same effect in rural human populations.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Acetilgalactosamina , Microbioma Gastrointestinal , Genotipo , Porcinos , Sistema del Grupo Sanguíneo ABO/genética , Acetilgalactosamina/metabolismo , Animales , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sitios de Carácter Cuantitativo , Porcinos/genética , Porcinos/microbiología
2.
J Biol Chem ; 300(5): 107256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569937

RESUMEN

Transforming growth factor ß (TGF-ß) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-ß type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-ß family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-ß family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-ß, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.


Asunto(s)
Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta , Animales , Humanos , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Factor de Crecimiento Transformador beta/metabolismo , Unión Proteica , Cromatina/genética , Cromatina/metabolismo , Transcripción Genética
3.
Chem Soc Rev ; 53(2): 714-763, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38105711

RESUMEN

As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.

4.
Chem Soc Rev ; 53(4): 2211-2247, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240305

RESUMEN

Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.

5.
Genes Dev ; 31(2): 197-208, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167503

RESUMEN

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas con Dominio LIM/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular , Activación Enzimática , Proteínas con Dominio LIM/genética , Estabilidad Proteica
6.
J Am Chem Soc ; 146(13): 9012-9025, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38516778

RESUMEN

The development of efficient and stable catalysts for hydrogen production from electrolytic water in a wide pH range is of great significance in alleviating the energy crisis. Herein, Pt nanoparticles (NPs) anchored on the vacancy of high entropy rare earth oxides (HEREOs) were prepared for the first time for highly efficient hydrogen production by water electrolysis. The prepared Pt-(LaCeSmYErGdYb)O showed excellent electrochemical performances, which require only 12, 57, and 77 mV to achieve a current density of 100 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS environments, respectively. In addition, Pt-(LaCeSmYErGdYb)O has successfully worked at 400 mA cm-2 @ 60 °C for 100 h in 0.5 M H2SO4, presenting the high mass activity of 37.7 A mg-1Pt and turnover frequency (TOF) value of 38.2 s-1 @ 12 mV, which is far superior to the recently reported hydrogen evolution reaction (HER) catalysts. Density functional theory (DFT) calculations have revealed that the interactions between Pt and HEREO have optimized the electronic structures for electron transfer and the binding strength of intermediates. This further leads to optimized proton binding and water dissociation, supporting the highly efficient and robust HER performances in different environments. This work provides a new idea for the design of efficient RE-based electrocatalysts.

7.
Anal Chem ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38938163

RESUMEN

Sensing temperature at the subcellular level is pivotal for gaining essential thermal insights into diverse biological processes. However, achieving sensitive and accurate sensing of the intracellular temperature remains a challenge. Herein, we develop a ratiometric organic fluorescent nanothermometer with reverse signal changes for the ultrasensitive mapping of intracellular temperature. The nanothermometer is fabricated from a binary mixture of saturated fatty acids with a noneutectic composition, a red-emissive aggregation-caused quenching luminogen, and a green-emissive aggregation-induced emission luminogen using a modified nanoprecipitation method. Different from the eutectic mixture with a single phase-transition point, the noneutectic mixture possesses two solid-liquid phase transitions, which not only allows for reversible regulation of the aggregation states of the encapsulated luminogens but also effectively broadens the temperature sensing range (25-48 °C) across the physiological temperature range. Remarkably, the nanothermometer exhibits reverse and sensitive signal changes, demonstrating maximum relative thermal sensitivities of up to 63.66% °C-1 in aqueous systems and 44.01% °C-1 in the intracellular environment, respectively. Taking advantage of these outstanding thermometric performances, the nanothermometer is further employed to intracellularly monitor minute temperature variations upon chemical stimulation. This study provides a powerful tool for the exploration of dynamic cellular thermal activities, holding great promise in unveiling intricate physiological processes.

8.
Small ; 20(12): e2307052, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946708

RESUMEN

Design of highly efficient electrocatalysts for alkaline hydrogen evolution reaction (HER) is of paramount importance for water electrolysis, but still a considerable challenge because of the slow HER kinetics in alkaline environments. Alloying is recognized as an effective strategy to enhance the catalytic properties. Lanthanides (Ln) are recognized as an electronic and structural regulator, attributed to their unique 4f electron behavior and the phenomenon known as lanthanide contraction. Here, a new class of Rh3Ln intermetallics (IMs) are synthesized using the sodium vapor reduction method. The alloying process induced an upshift of the d-band center and electron transfer from Ln to Rh, resulting in optimized adsorption and dissociation energies for H2O molecules. Consequently, Rh3Tb IMs exhibited outstanding HER activity in both alkaline environments and seawater, displaying an overpotential of only 19 mV at 10 mA cm-2 and a Tafel slope of 22.2 mV dec-1. Remarkably, the current density of Rh3Tb IMs at 100 mV overpotential is 8.6 and 5.7 times higher than that of Rh/C and commercial Pt/C, respectively. This work introduces a novel approach to the rational design of HER electrocatalysis and sheds light on the role of lanthanides in electrocatalyst systems.

9.
Small ; 20(26): e2310238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267815

RESUMEN

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Asunto(s)
Cesio , Europio , Plomo , Luminiscencia , Nanopartículas , Dióxido de Silicio , Agua , Pez Cebra , Animales , Dióxido de Silicio/química , Europio/química , Nanopartículas/química , Plomo/química , Cesio/química , Agua/química , Titanio/química , Óxidos , Compuestos de Calcio
10.
J Neurosci Res ; 102(2): e25309, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400573

RESUMEN

Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.


Asunto(s)
Sinapsis , Transmisión Sináptica , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Mitocondrias/metabolismo , Plasticidad Neuronal/fisiología , Autofagia
11.
Planta ; 260(1): 25, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861219

RESUMEN

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Asunto(s)
Clorofila , Luz , Magnoliopsida , Temperatura , Clorofila/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/fisiología , Magnoliopsida/genética , Agua/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Ambiente , Altitud
12.
J Antimicrob Chemother ; 79(5): 1069-1080, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526879

RESUMEN

OBJECTIVES: The emergence and expansion of carbapenem-resistant Klebsiella pneumoniae infections is a concern due to the lack of 'first-line' antibiotic treatment options. The ceftazidime/avibactam is an important clinical treatment for carbapenem-resistant K. pneumoniae infections but there is an increasing number of cases of treatment failure and drug resistance. Therefore, a potential solution is combination therapies that result in synergistic activity against K. pneumoniae carbapenemase: producing K. pneumoniae (KPC-Kp) isolates and preventing the emergence of KPC mutants resistant to ceftazidime/avibactam are needed in lieu of novel antibiotics. METHODS: To evaluate their synergistic activity, antibiotic combinations were tested against 26 KPC-Kp strains. Antibiotic resistance profiles, molecular characteristics and virulence genes were investigated by susceptibility testing and whole-genome sequencing. Antibiotic synergy was evaluated by in vitro chequerboard experiments, time-killing curves and dose-response assays. The mouse thigh model was used to confirm antibiotic combination activities in vivo. Additionally, antibiotic combinations were evaluated for their ability to prevent the emergence of ceftazidime/avibactam resistant mutations of blaKPC. RESULTS: The combination of ceftazidime/avibactam plus meropenem showed remarkable synergistic activity against 26 strains and restored susceptibility to both the partnering antibiotics. The significant therapeutic effect of ceftazidime/avibactam combined with meropenem was also confirmed in the mouse model and bacterial loads in the thigh muscle of the combination groups were significantly reduced. Furthermore, ceftazidime/avibactam plus meropenem showed significant activity in preventing the occurrence of resistance mutations. CONCLUSIONS: Our results indicated that the combination of ceftazidime/avibactam plus meropenem offers viable therapeutic alternatives in treating serious infections due to KPC-Kp.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Proteínas Bacterianas , Ceftazidima , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sinergismo Farmacológico , Infecciones por Klebsiella , Klebsiella pneumoniae , Meropenem , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Animales , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Meropenem/farmacología , Meropenem/administración & dosificación , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Femenino , Secuenciación Completa del Genoma , Quimioterapia Combinada , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/genética
13.
Brain Cogn ; 178: 106179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788319

RESUMEN

Inhibitory control, the ability to manage conflicting responses and suppress inappropriate actions, is crucial for team sports athletes, including soccer players. While previous studies have shown that soccer players possess superior inhibitory control, the underlying mechanisms responsible for this advantage remain unclear. Thus, this research aimed to investigate the neural processes involved in conflict resolution and response inhibition, comparing collegiate level soccer players with non-athletes. Participants completed a novel go/no-go task that involved conflict resolution and response inhibition, while their electroencephalograms were recorded. Despite no significant difference in behavioral performance between the two groups, soccer players exhibited notable N2 and frontal midline theta modulations in response to conflict resolution and inhibition, which were comparatively weaker in non-athletes. Our findings suggest that expertise in team sports may enhance neural sensitivity to subtle yet significant information, even without a discernible behavioral advantage.


Asunto(s)
Atletas , Electroencefalografía , Inhibición Psicológica , Fútbol , Humanos , Fútbol/fisiología , Adulto Joven , Masculino , Electroencefalografía/métodos , Potenciales Evocados/fisiología , Desempeño Psicomotor/fisiología , Encéfalo/fisiología , Adulto , Adolescente , Función Ejecutiva/fisiología , Tiempo de Reacción/fisiología , Rendimiento Atlético/fisiología
14.
Environ Res ; 251(Pt 1): 118596, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442810

RESUMEN

n-Caproic acid is a widely used biochemical that can be produced from organic waste through chain elongation technology. This study aims to evaluate the environmental impacts of n-caproic acid production through chain elongation by two processes (i.e., shunting and staged technology). The Open-life cycle assessment (LCA) model was used to calculate the environmental impacts of both technologies based on experimental data. Results showed that the shunting technology had higher environmental impacts than the staged technology. Water and electricity made bigger contribution to the environmental impacts of both technologies. Reusing chain elongation effluent substituting for water and using electricity produced by wind power could reduce the environmental impacts of water and electricity effectively. Using ethanol from food waste had higher global warming potential than fossil ethanol, which suggested that a cradle-to-grave LCA is needed to be carried out for specific raw materials and chain elongation products in the future.


Asunto(s)
Ambiente , Alimento Perdido y Desperdiciado
15.
Nucleic Acids Res ; 50(D1): D340-D346, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718740

RESUMEN

Liquid-liquid phase separation (LLPS) partitions cellular contents, underlies the formation of membraneless organelles and plays essential biological roles. To date, most of the research on LLPS has focused on proteins, especially RNA-binding proteins. However, accumulating evidence has demonstrated that RNAs can also function as 'scaffolds' and play essential roles in seeding or nucleating the formation of granules. To better utilize the knowledge dispersed in published literature, we here introduce RNAPhaSep (http://www.rnaphasep.cn), a manually curated database of RNAs undergoing LLPS. It contains 1113 entries with experimentally validated RNA self-assembly or RNA and protein co-involved phase separation events. RNAPhaSep contains various types of information, including RNA information, protein information, phase separation experiment information and integrated annotation from multiple databases. RNAPhaSep provides a valuable resource for exploring the relationship between RNA properties and phase behaviour, and may further enhance our comprehensive understanding of LLPS in cellular functions and human diseases.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Orgánulos/química , Transición de Fase , Proteínas de Unión al ARN/química , ARN/química , Programas Informáticos , Animales , Células Eucariotas/citología , Células Eucariotas/metabolismo , Humanos , Internet , Anotación de Secuencia Molecular , Orgánulos/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , ARN/clasificación , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
BMC Musculoskelet Disord ; 25(1): 357, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704572

RESUMEN

BACKGROUND: Rotator cuff tendinopathy (RCT) is a widespread musculoskeletal disorder and a primary cause of shoulder pain and limited function. The resulting pain and limited functionality have a detrimental impact on the overall quality of life. The purpose of this study was to perform a systematic review of the effects of extracorporeal shock wave therapy (ESWT) for RCT. METHODS: The literature search was conducted on the following databases from inception to February 20, 2024: PubMed, Web of Science, the Cochrane Library, Scopus, MEDLINE, EMBASE, EBSCO, and China National Knowledge Infrastructure (CNKI) were checked to identify the potential studies exploring the effect of ESWT for the treatment of Rotator cuff tendinopathy (Calcification or non-calcification), control group for sham, other treatments (including placebo), without restriction of date, language. Two researchers independently screened literature, extracted data, evaluated the risk of bias in the included studies, and performed meta-analysis using RevMan 5.3 software. RESULTS: A total of 16 RCTs with 1093 patients were included. The results showed that compared with the control group, ESWT for pain score Visual Analogue Scale/Score (VAS) (SMD = -1.95, 95% CI -2.47, -1.41, P < 0.00001), function score Constant-Murley score (CMS) (SMD = 1.30, 95% CI 0.67, 1.92, P < 0.00001), University of California Los Angeles score (UCLA) (SMD = 2.69, 95% CI 1.64, 3.74, P < 0.00001), American Shoulder and Elbow Surgeons form (ASES) (SMD = 1.29, 95% CI 0.93, 1.65, P < 0.00001), Range of motion (ROM) External rotation (SMD = 1.00, 95% CI 0.29, 1.72, P = 0.02), Total effective rate (TER) (OR = 3.64, 95% CI 1.85, 7.14, P = 0.0002), the differences in the above results were statistically significant. But ROM-Abduction (SMD = 0.72, 95% CI -0.22, 1.66, P = 0.13), the difference was not statistically significant. CONCLUSION: Currently limited evidence suggests that, compared with the control group, ESWT can provide better pain relief, functional recovery, and maintenance of function in patients with RCT.


Asunto(s)
Tratamiento con Ondas de Choque Extracorpóreas , Manguito de los Rotadores , Dolor de Hombro , Tendinopatía , Humanos , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Tendinopatía/terapia , Resultado del Tratamiento , Manguito de los Rotadores/fisiopatología , Dolor de Hombro/terapia , Lesiones del Manguito de los Rotadores/terapia , Dimensión del Dolor , Ensayos Clínicos Controlados Aleatorios como Asunto , Rango del Movimiento Articular , Calidad de Vida
17.
Chin J Traumatol ; 27(4): 235-241, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38637177

RESUMEN

PURPOSE: Under-foot impact loadings can cause serious lower limb injuries in many activities, such as automobile collisions and underbody explosions to military vehicles. The present study aims to compare the biomechanical responses of the mainstream vehicle occupant dummies with the human body lower limb model and analyze their robustness and applicability for assessing lower limb injury risk in under-foot impact loading environments. METHODS: The Hybrid III model, the test device for human occupant restraint (THOR) model, and a hybrid human body model with the human active lower limb model were adopted for under-foot impact analysis regarding different impact velocities and initial lower limb postures. RESULTS: The results show that the 2 dummy models have larger peak tibial axial force and higher sensitivity to the impact velocities and initial postures than the human lower limb model. In particular, the Hybrid III dummy model presented extremely larger peak tibial axial forces than the human lower limb model. In the case of minimal difference in tibial axial force, Hybrid III's tibial axial force (7.5 KN) is still 312.5% that of human active lower limb's (2.4 KN). Even with closer peak tibial axial force values, the biomechanical response curve shapes of the THOR model show significant differences from the human lower limb model. CONCLUSION: Based on the present results, the Hybrid III dummy cannot be used to evaluate the lower limb injury risk in under-foot loading environments. In contrast, potential improvement in ankle biofidelity and related soft tissues of the THOR dummy can be implemented in the future for better applicability.


Asunto(s)
Accidentes de Tránsito , Humanos , Fenómenos Biomecánicos , Accidentes de Tránsito/prevención & control , Maniquíes , Extremidad Inferior/fisiología , Soporte de Peso
18.
J Am Chem Soc ; 145(24): 13147-13160, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37262421

RESUMEN

The immunotherapy of deep solid tumors in the human body, such as liver cancer, still faces great challenges, especially the inactivation and insufficient infiltration of immune cells in solid tumor microenvironment. Natural killer (NK) cells are gaining ever-increasing attention owing to their unique features and are expected to play an important role in the liver cancer immunotherapy. However, NK cells are severely insufficient and inactivated in solid liver tumor due to the highly immunosuppressive intratumor microenvironment, resulting in poor clinical therapeutic efficacy. Herein, we propose a mild magnetocaloric regulation approach using a magnetogenetic nanoplatform MNPs@PEI-FA/pDNA (MPFD), which is synthesized by loading a heat-inducible plasmid DNA (HSP70-IL-2-EGFP) on polyethyleneimine (PEI)- and folic acid (FA)-modified ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (MNPs) to promote the proliferation and activation of tumor-infiltrating NK cells under magnetic manipulation without the limitation of penetration depth for orthotopic liver cancer immunotherapy. The magnetothermally responsive MPFD serves as a magnetism-heat nanotransducer to induce the gene transcription of IL-2 cytokine in orthotopic liver tumor for NK cell proliferation and activation. Both in vitro and in vivo results demonstrate that the remote mild magnetocaloric regulation (∼40 °C) by MPFD initiates the HSP70 promoter to trigger the overexpression of IL-2 cytokine for subsequent secretion, leading to in situ expansion and activation of tumor-infiltrating NK cells through the IL-2/IL-2 receptor (IL-2R) pathways and the resulting prominent tumor inhibition. This work not only evidences the great potential of magnetogenetic nanoplatform but also reveals the underlying proliferation and activation mechanism of NK cells in liver cancer treatment by magnetogenetic nanoplatform.


Asunto(s)
Neoplasias Hepáticas , Neoplasias , Humanos , Interleucina-2 , Inmunoterapia , Neoplasias Hepáticas/terapia , Citocinas , Proliferación Celular , Fenómenos Magnéticos , Microambiente Tumoral
19.
J Am Chem Soc ; 145(6): 3312-3317, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728932

RESUMEN

Developing magnetic ultrasoft robots to navigate through extraordinarily narrow and confined spaces like capillaries in vivo requires synthesizing materials with excessive deformability, responsive actuation, and rapid adaptability, which are difficult to achieve with the current soft polymeric materials, such as elastomers and hydrogels. We report a magnetically actuatable and water-immiscible (MAWI) coacervate based on the assembled magnetic core-shell nanoparticles to function as a liquid robot. The degradable and biocompatible millimeter-sized MAWI coacervate liquid robot can remain stable under changing pH and salt concentrations, release loaded cargoes on demand, squeeze through an artificial capillary network within seconds, and realize intravascular targeting in vivo guided by an external magnetic field. We believe the proposed "coacervate-based liquid robot" can implement demanding tasks beyond the capability of conventional elastomer or hydrogel-based soft robots in the field of biomedicine and represents a distinct design strategy for high-performance ultrasoft robots.


Asunto(s)
Robótica , Agua , Diseño de Equipo , Fenómenos Físicos , Elastómeros , Fenómenos Magnéticos
20.
Small ; 19(23): e2208116, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890772

RESUMEN

With the consumption of disposable electronic devices increasing, it is meaningful but also a big challenge to develop reusable and sustainable materials to replace traditional single-use sensors. Herein, a clever strategy for constructing a multifunctional sensor with 3R circulation (renewable, reusable, pollution-reducing biodegradable) is presented, in which silver nanoparticles (AgNPs) with multiple interactions are introduced into a reversible non-covalent cross-linking network composed of biocompatible and degradable carboxymethyl starch (CMS) and polyvinyl alcohol (PVA) to simultaneously obtain high mechanical conductivity and long-term antibacterial properties by a one-pot method. Surprisingly, the assembled sensor shows high sensitivity (gauge factor up to 4.02), high conductivity (0.1753 S m-1 ), low detection limit (0.5%), long-term antibacterial ability (more than 7 days), and stable sensing performance. Thus, the CMS/PVA/AgNPs sensor can not only accurately monitor a series of human behavior, but also identify handwriting recognition from different people. More importantly, the abandoned starch-based sensor can form a 3R circulation. Especially, the fully renewable film still shows excellent mechanical performance, achieving reusable without sacrificing its original function. Therefore, this work provides a new horizon for multifunctional starch-based materials as sustainable substrates for replacing traditional single-use sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA